B40120 Ni-MH BUTTON CELL

TECHNICAL DATA

Model	Voltage	Capacity	Recommended Trickle Charge Current	Nominal Charge Current	Normal Charging Time	Nominal Discharge Current	Weight
B40120	2.4 V	230 mAh	$6.9 \sim 11.5 \mathrm{~mA}$	23 mA	$14 \sim 16 \mathrm{~h}$	46 mA	21.4 g

TECHNICAL CHARACTERISTICS

TYPICAL DISCHARGE CURVE (46 mA)

CYCLE LIFE CURVE

TYPICAL CHARGE CURVE AT VARIOUS CURRENTS

DISCHARGE CURVE AT VARIOUS TEMPERATURES (46mA)

SELF DISCHARGE RATE AT VAROUS TEMPERATURES

TECHNICAL INFORMATION

1. APPLICATION

This specification applies to the Ni-MH batteries
Model : B40120
2. CELL AND TYPE
2.1 Cell : Sealed Ni-MH Button Cell
2.2 Type : Button type
2.3 Size type : 2.4 V
3. RATINGS
3.1 Nominal voltage : 2.4 V
3.2 Nominal capacity : 230 mAh
3.3 Typical weight : 21.4 g
3.4 Standard charge : $23 \mathrm{~mA} \times 14$ hours
3.5 Rapid charge: $46 \mathrm{~mA} \times 6$ hours

Trickle current: 6.9 mA
3.6 Discharge cut-off voltage: 2.0 V
3.7 Temperature range for operation (Humidity: Max.85\%)

Standard charge $\quad 0 \sim+45^{\circ} \mathrm{C}$
Rapid charge $\quad+10 \sim+45^{\circ} \mathrm{C}$
Trickle charge $\quad 0 \sim+45^{\circ} \mathrm{C}$
Discharge $\quad-10 \sim+45^{\circ} \mathrm{C}$
3.8 Temperature range for storage (Humidity: Max.85\%)

Within 2 years $\quad-20 \sim+35^{\circ} \mathrm{C}$
Within 6 months $\quad-20 \sim+45^{\circ} \mathrm{C}$
Within a month $\quad-20 \sim+45^{\circ} \mathrm{C}$
Within a week $\quad-20 \sim+55^{\circ} \mathrm{C}$
4. ASSEMBLY \& DIMENSIONS

Per attached drawing

5. PERFORMANCE

5.1 TEST CONDITIONS

The test is carried out with new batteries (within a month after delivery)
ambient conditions
Temperature: $+25 \pm 5^{\circ} \mathrm{C}$
Humidity: $\quad 60 \pm 20 \%$
Note 1
Standard charge: $23 \mathrm{~mA} \times 14$ hours
Standard discharge: 46 mA to 2.0 V
5.2 TEST METHOD \& PERFORMANCE

Test	Unit	Specification	Conditions	Remarks
Capacity	mAh	$\geqslant 230$	Standard Charge/discharge	Up to 3 cycles Are allowed
Open Circuit Voltage (OCV)	Voltage (V)	$\geqslant 2.6$	After 1 hour standard Charge	
Internal Impedance	$\mathrm{m} \Omega /$ cell	$\leqslant 800$	Upon fully charge $(1 \mathrm{KHz})$	
High rate Discharge (115 mA)	Minute	$\geqslant 60$	Standard charge Before discharge	
Discharge Current	mA	115	Maximum continuous Discharge current	
Over charge		No leakage Not explosion	6.9 mA charge one year	
Charge Retention	mAh	184	Standard charge; Storage: 28 days; Standard discharge	
Cycle Life	Cycle	$\geqslant 400$	IEC/CEI61951-2:2001. 4.4	
Leakage		No leakage nor Deformation	Fully charge at 23 mA , Stand 14 days	

Note 2 IEC/CEI61951-2:2001. 4.4 cycle life

Cycle number	Charge	Stand in charged Condition	Discharge
1	23 mA for 16 h	None	57.5 mA for 2 h 20 min
$2-48$	57.5 mA for 3 h 10 min	None	57.5 mA for 2 h 20 min
49	57.5 mA for 3 h 10 min	None	57.5 mA to $1.0 \mathrm{~V} / \mathrm{cell}$
50	23 mA for 16 h	1 h to 4 h	46 mA to $1.0 \mathrm{~V} / \mathrm{cell}$

1.Befor the endurance in cycles test, the cell shall be discharged at 46 mA to a final voltage of $1.0 \mathrm{~V} /$ cell.
2.The following endurance test shall then be carried out, in an ambient temperature of $20^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$.
5.3 Humidity

The battery shall not leak during the 14 days which it is submitted to the condition of a temperature of $33 \pm 3^{\circ} \mathrm{C}$ and a relative humidity of $80 \pm 5 \%$.
6. OTHERS
6.1 We recommend you to set the cut-off voltage at $1.0 \mathrm{~V} / \mathrm{cell}$.
6.2 If the cut-off voltage is above $1.1 \mathrm{~V} /$ cell, the battery may be underutilized resulting insufficient use of the available capacity.
6.3 If it is below $1.0 \mathrm{~V} /$ cell,the battery may have discharge or reverse charge to the cell.
7. PRECAUTION

The cells shall be delivered in charged condition. Before testing or using, the cell shall be discharged at $20 \pm 5^{\circ} \mathrm{C}$ at a constant current of 46 mA to a final voltage of $1.0 \mathrm{~V} / \mathrm{cell}$.
7.1 Avoid throwing cells into a fire or attempting to disassemble them.
7.2 Avoid short circuiting the cells.
7.3 Avoid direct solidarity to cells.
7.4 Observe correct polarity when connecting.
7.5 Do not charge with more than our specified current.
7.6 Use cells only within the specified working temperature range.
7.7 Store cells in dry and cool place.

