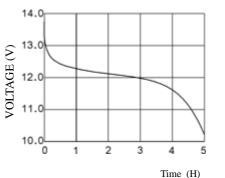
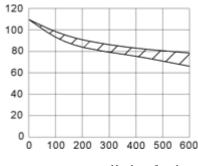

B40109 Ni-MH BUTTON CELL

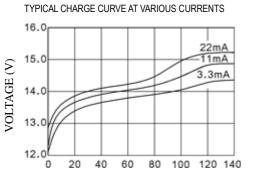
TECHNICAL DATA



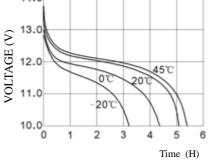
Model	Voltage	Capacity	Recommended Trickle Charge Current	Nominal Charge Current	Normal Charging Time	Nominal Discharge Current	Weight
B40109	12.0V	110mAh	3.3~5.5mA	11mA	14~16h	22mA	45g


ECHNICAL CHARACTERISTICS

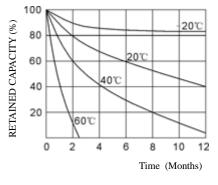
TYPICAL DISCHARGE CURVE (22mA)



CYCLE LIFE CURVE


% NOMINAL CAPACITY

Number of cycles



Capacity input (%)

DISCHARGE CURVE AT VARIOUS TEMPERATURES (22mA)

SELF DISCHARGE RATE AT VAROUS TEMPERATURES

TECHNICAL INFORMATION

1. APPLICATION This specification applies to the Ni-MH batteries

Model : B40109

- 2. CELL AND TYPE
- 2.1 Cell : Sealed Ni-MH Button Cell
- 2.2 Type : Button type
- 2.3 Size type : 12.0V
- 3. RATINGS
- 3.1 Nominal voltage : 12.0V
- 3.2 Nominal capacity : 110mAh
- 3.3 Typical weight : 45g
- 3.4 Standard charge : $11mA \times 14hours$
- 3.5 Rapid charge : $22mA \times 6hours$
 - Trickle current : 3.3mA
- 3.6 Discharge cut-off voltage: 10.0V
- 3.7 Temperature range for operation (Humidity: Max.85%)

Standard charge	$0 \sim +45^{\circ} \text{C}$
Rapid charge	$+10 \sim +45$ °C
Trickle charge	$0 \sim +45 ^{\circ}\text{C}$
Discharge	-10 ∼ +45 °C

3.8 Temperature range for storage (Humidity: Max.85%) Within 2 years $-20 \sim +35^{\circ}$ C Within 6 months $-20 \sim +45^{\circ}$ C

within 0 monuis	-20 · +45 C
Within a month	-20 ∼ +45 °C
Within a week	-20 ~ +55℃

- 4. ASSEMBLY & DIMENSIONS Per attached drawing
- 5. PERFORMANCE
- 5.1 TEST CONDITIONS

The test is carried out with new batteries (within a month after delivery) ambient conditions

Temperature: $+25 \pm 5^{\circ}$ C Humidity: $60 \pm 20\%$ Note 1 Standard charge : $11\text{mA} \times 14\text{hours}$ Standard discharge : 22mA to 10.0V

5.2 TEST METHOD & PERFORMANCE

Test	Unit	Specification	Conditions	Remarks
Conositu	mAh	≥110	Standard	Up to 3 cycles
Capacity	IIIAII	≥110	Charge/discharge	Are allowed
Open Circuit Voltage		>12	After 1 hour standard	
Voltage (OCV)	(V)	≥13	Charge	
Internal	mΩ/cell	≤2000	Upon fully charge	
Impedance	III S2 /Cell	≥2000	(1KHz)	
High rate	Minute		Standard charge	
Discharge (55 mA)	Minute	≥ 60	Before discharge	
Discharge	mA	55	Maximum continuous	
Current	mA	55	Discharge current	
Over charge		No leakage	3.3mA charge	
Over charge		Not explosion	one year	
Charge		88	Standard charge;	
Retention	mAh		Storage: 28 days;	
Retention			Standard discharge	
Cycle Life	Cycle	≥400	IEC/CEI61951-2:2001. 4.4	
Leakage		No leakage nor	Fully charge at 11mA,	
Leakage		Deformation	Stand 14 days	

Note 2 IEC/CEI61951-2:2001. 4.4 cycle life

Cycle number	Charge	Stand in charged Condition	Discharge		
1	11mA for 16h	None	27.5mA for 2h20min		
2-48	27.5mA for 3h10min	None	27.5mA for 2h20min		
49	27.5mA for 3h10min	None	27.5mA to 1.0V/cell		
50	11mA for 16h	1h to 4h	22mA to 1.0V/cell		

1. Befor the endurance in cycles test, the cell shall be discharged at 22mA to a final voltage of 1.0V/cell.

2. The following endurance test shall then be carried out, in an ambient temperature of $20^{\circ}C \pm 5^{\circ}C$.

5.3 Humidity

The battery shall not leak during the 14 days which it is submitted to the condition of a temperature of $33\pm3^{\circ}$ C and a relative humidity of $80\pm5\%$.

- 6. OTHERS
- 6.1 We recommend you to set the cut-off voltage at 1.0V/cell.
- 6.2 If the cut-off voltage is above 1.1V/cell, the battery may be underutilized resulting insufficient use of the available capacity.
- 6.3 If it is below 1.0V/cell,the battery may have discharge or reverse charge to the cell.

7. PRECAUTION

The cells shall be delivered in charged condition. Before testing or using, the cell shall be discharged at $20\pm5^{\circ}$ °C at a constant current of 22mA to a final voltage of 1.0V/cell.

- 7.1 Avoid throwing cells into a fire or attempting to disassemble them.
- 7.2 Avoid short circuiting the cells.
- 7.3 Avoid direct solidarity to cells.
- 7.4 Observe correct polarity when connecting.
- 7.5 Do not charge with more than our specified current.
- 7.6 Use cells only within the specified working temperature range.
- 7.7 Store cells in dry and cool place.