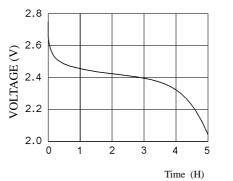
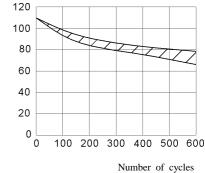
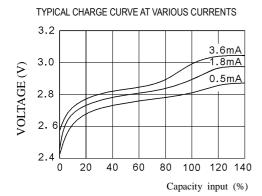

B40081 Ni-MH BUTTON CELL

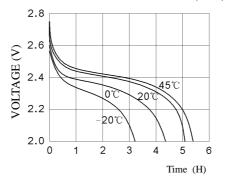
TECHNICAL DATA

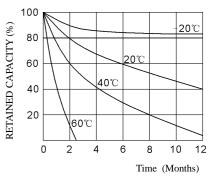


Model	Voltage	Capacity	Recommended Trickle Charge Current	Nominal Charge Current	Normal Charging Time	Nominal Discharge Current	Weight
B40081	2.4V	18mAh	0.5~0.9mA	1.8mA	14~16h	3mA	2.9g


TECHNICAL CHARACTERISTICS


TYPICAL DISCHARGE CURVE (3.6mA)


CYCLE LIFE CURVE


% NOMINAL CAPACITY

DISCHARGE CURVE AT VARIOUS TEMPERATURES (3.6mA)

SELF DISCHARGE RATE AT VAROUS TEMPERATURES

TECHNICAL INFORMATION

1. APPLICATION

This specification applies to the Ni-MH batteries Model : B40081

- 2. CELL AND TYPE
- 2.1 Cell :Sealed Ni-MH Button Cell
- 2.2 Type :Button type
- 2.3 Size type : 2.4V
- 3. RATINGS
- 3.1 Nominal voltage : 2.4V
- 3.2 Nominal capacity : 18mAh
- 3.3 Typical weight : 2.9g
- 3.4 Standard charge : 1.8mA \times 14hours
- 3.5 Rapid charge : $3.6 \text{mA} \times 6 \text{hours}$
 - Trickle current : 0.54mA
- 3.6 Discharge cut-off voltage: 2.0V
- 3.7 Temperature range for operation (Humidity: Max.85%)

Standard charge	$0 \sim +45 ^{\circ}\text{C}$		
Rapid charge	$+10 \sim +45$ °C		
Trickle charge	$0 \sim +45 ^{\circ}\text{C}$		
Discharge	-10 ~ +45℃		

- 3.8 Temperature range for storage (Humidity: Max.85%) Within 2 years $-20 \sim +35^{\circ}$ C Within 6 months $-20 \sim +45^{\circ}$ C
 - Within a month $-20 \sim +45^{\circ}C$ Within a week $-20 \sim +55^{\circ}C$
- 4. ASSEMBLY & DIMENSIONS Per attached drawing
- 5. PERFORMANCE
- 5.1 TEST CONDITIONS

The test is carried out with new batteries (within a month after delivery) ambient conditions

Temperature: $+25 \pm 5^{\circ}$ C Humidity: $60 \pm 20\%$ Note 1 Standard charge : 1.8mA×14hours Standard discharge : 3.6mA to 2.0V

5.2 TEST METHOD & PERFORMANCE

Test	Unit	Specification	Conditions	Remarks
Conscitu	mAh	≥18	Standard	Up to 3 cycles
Capacity	mAn	≥18	Charge/discharge	Are allowed
Open Circuit	Voltage	≥2.6	After 1 hour standard	
Voltage (OCV)	(V)		Charge	
Internal	0 / 11	≤2500	Upon fully charge	
Impedance	mΩ/cell	≥2500	(1KHz)	
High rate	Minute	> (0	Standard charge	
Discharge (9 mA)	Minute	≥ 60	Before discharge	
Discharge	mA	9	Maximum continuous	
Current	IIIA	9	Discharge current	
Over charge		No leakage	0.54mA charge	
Over charge		Not explosion	one year	
Charge			Standard charge;	
Charge Retention	mAh	14.4	Storage: 28 days;	
Retention			Standard discharge	
Cycle Life	Cycle	≥400	IEC/CEI61951-2:2001. 4.4	
Laskaga		No leakage nor	Fully charge at 1.8mA,	
Leakage		Deformation	Stand 14 days	

Note 2 IEC/CEI61951-2:2001. 4.4 cycle life

Charge	Stand in charged Condition	Discharge	
1.8mA for 16h	None	4.5mA for 2h20min	
4.5mA for 3h10min	None	4.5mA for 2h20min	
4.5mA for 3h10min	None	4.5mA to 1.0V/cell	
1.8mA for 16h	1h to 4h	3.6mA to 1.0V/cell	
	1.8mA for 16h 4.5mA for 3h10min 4.5mA for 3h10min	1.8mA for 16hNone4.5mA for 3h10minNone4.5mA for 3h10minNone	

1. Befor the endurance in cycles test, the cell shall be discharged at 3.6 mA to a final voltage of 1.0 V/cell.

2. The following endurance test shall then be carried out, in an ambient temperature of $20^{\circ}C \pm 5^{\circ}C$.

5.3 Humidity

The battery shall not leak during the 14 days which it is submitted to the condition of a temperature of $33\pm3^{\circ}$ C and a relative humidity of $80\pm5\%$.

- 6. OTHERS
- 6.1 We recommend you to set the cut-off voltage at 1.0V/cell.
- 6.2 If the cut-off voltage is above 1.1V/cell, the battery may be underutilized resulting insufficient use of the available capacity.
- 6.3 If it is below 1.0V/cell,the battery may have discharge or reverse charge to the cell.

7. PRECAUTION

The cells shall be delivered in charged condition. Before testing or using, the cell shall be discharged at $20\pm5^{\circ}$ °C at a constant current of 3.6mA to a final voltage of 1.0V/cell.

- 7.1 Avoid throwing cells into a fire or attempting to disassemble them.
- 7.2 Avoid short circuiting the cells.
- 7.3 Avoid direct solidarity to cells.
- 7.4 Observe correct polarity when connecting.
- 7.5 Do not charge with more than our specified current.
- 7.6 Use cells only within the specified working temperature range.
- 7.7 Store cells in dry and cool place.