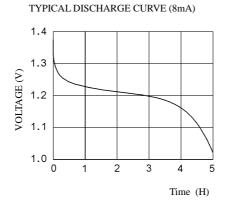
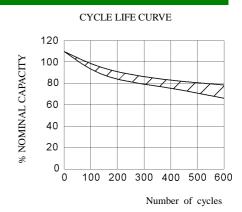
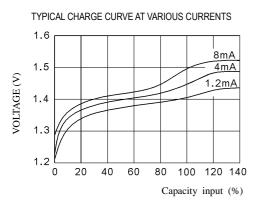
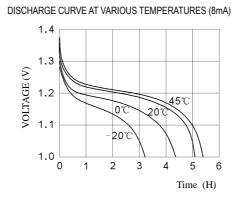
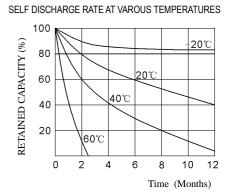

B40065 Ni-MH BUTTON CELL


TECHNICAL DATA




Model	Voltage	Capacity	Recommended Trickle Charge Current	Nominal Charge Current	Normal Charging Time	Nominal Discharge Current	Weight
B40065	1.2V	40mAh	1.2~2mA	4mA	14~16h	8mA	1.9g


TECHNICAL CHARACTERISTICS



TECHNICAL INFORMATION

1. APPLICATION

This specification applies to the Ni-MH batteries

Model : B40065

- 2. CELL AND TYPE
- 2.1 Cell: Sealed Ni-MH Button Cell
- 2.2 Type : Button type
- 2.3 Size type: 1.2V
- 3. RATINGS
- 3.1 Nominal voltage : 1.2V
- 3.2 Nominal capacity : 40mAh
- 3.3 Typical weight : 1.9g
- 3.4 Standard charge : 4mA×14hours
- 3.5 Rapid charge : 8mA×6hours
 - Trickle current : 1.2mA
- 3.6 Discharge cut-off voltage: 1.0V
- 3.7 Temperature range for operation (Humidity: Max.85%)
 - Standard charge $0 \sim +45^{\circ}$ C
 - Rapid charge $+10 \sim +45^{\circ}$ C
 - Trickle charge $0 \sim +45^{\circ}C$
 - Discharge $-10 \sim +45^{\circ}$ C
- 3.8 Temperature range for storage (Humidity: Max.85%)
 - Within 2 years $-20 \sim +35^{\circ}$ C
 - Within 6 months $-20 \sim +45^{\circ}\text{C}$
 - Within a month $-20 \sim +45^{\circ}\text{C}$
 - Within a week $-20 \sim +55^{\circ}$ C

4. ASSEMBLY & DIMENSIONS

Per attached drawing

5. PERFORMANCE

5.1 TEST CONDITIONS

The test is carried out with new batteries (within a month after delivery)

ambient conditions

Temperature: $+25 \pm 5^{\circ}$ C

Humidity: $60 \pm 20\%$

Note 1

Standard charge : 4mA×14hours

Standard discharge : 8mA to 1.0V

5.2 TEST METHOD & PERFORMANCE

Test	Unit	Specification	Conditions	Remarks
Composites	mAh	≥40	Standard	Up to 3 cycles
Capacity	IIIAII	<i>≤</i> 40	Charge/discharge	Are allowed
Open Circuit	Voltage	≥1.3	After 1 hour standard	
Voltage (OCV)	(V)		Charge	
Internal	mΩ/cell	≤2000	Upon fully charge	
Impedance	m s2/cen	≥2000	(1KHz)	
High rate	Minute	>60	Standard charge	
Discharge (20 mA)	Minute	≥60	Before discharge	
Discharge	A	20	Maximum continuous	
Current	mA	20	Discharge current	
Over charge		No leakage	1.2mA charge	
Over charge		Not explosion	one year	
Change		32	Standard charge;	
Charge	mAh		Storage: 28 days;	
Retention			Standard discharge	
Cycle Life	Cycle	≥400	IEC/CEI61951-2:2001. 4.4	
Laglaga		No leakage nor	Fully charge at 4mA,	
Leakage		Deformation	Stand 14 days	

Note 2 IEC/CEI61951-2:2001. 4.4 cycle life

Cycle number	Charge	Stand in charged Condition	Discharge	
1	4mA for 16h	None	10mA for 2h20min	
2-48	10mA for 3h10min	None	10mA for 2h20min	
49	10mA for 3h10min	None	10mA to 1.0V/cell	
50	4mA for 16h	1h to 4h	8mA to 1.0V/cell	

^{1.}Befor the endurance in cycles test, the cell shall be discharged at 8mA to a final voltage of 1.0V/cell.

5.3 Humidity

The battery shall not leak during the 14 days which it is submitted to the condition of a temperature of $33\pm3^{\circ}$ C and a relative humidity of $80\pm5\%$.

6. OTHERS

- 6.1 We recommend you to set the cut-off voltage at 1.0V/cell.
- 6.2 If the cut-off voltage is above 1.1V/cell, the battery may be underutilized resulting insufficient use of the available capacity.
- 6.3 If it is below 1.0V/cell,the battery may have discharge or reverse charge to the cell.

7. PRECAUTION

The cells shall be delivered in charged condition. Before testing or using, the cell shall be discharged at $20\pm5^{\circ}$ C at a constant current of 8mA to a final voltage of 1.0V/cell.

- 7.1 Avoid throwing cells into a fire or attempting to disassemble them.
- 7.2 Avoid short circuiting the cells.
- 7.3 Avoid direct solidarity to cells.
- 7.4 Observe correct polarity when connecting.
- 7.5 Do not charge with more than our specified current.
- 7.6 Use cells only within the specified working temperature range.
- 7.7 Store cells in dry and cool place.

^{2.} The following endurance test shall then be carried out, in an ambient temperature of $20^{\circ}\text{C} \pm 5^{\circ}\text{C}$.