
The Power of LED Light

Typical Electrical & Optical Characteristics (IF=350mA and Ta=25°C)

Color	Dominant Wavelength (nm)			l Voltage V)		ous Flux m)	Rever- se Cur- rent (µA)	50% Power Angle
	Min	Тур	Min	Max	Min	Тур	max	Тур
Green	520	530	3.1	3.6	65	75	10	120
Red	620	630	2.1	2.6	40	50	10	120
Blue	465	475	3.1	3.6	10	15	10	120

Tolerance of measurem.
 of luminous flux: +/-15%
 2. Tolerance of
 measurement of dominant
 Wavelength: +/-1nm
 3. Tolerance of
 measurement of
 forward voltage +/-0,1V

Technical Dimensions

Features

Highest Luminous Flex Long Lifetime Operation Super Energy Efficency Superior UV Resistance Superior ESD protection

Absulut Maximum Ratings (Ta=25°C)

Items	Symb	Absulut	l la:4				
items	ols		Unit				
		Green	Blue	Red			
Power Dissipation	Pd	1600	1200	3200	mW		
Forward Current	lf		mA				
Peak Forward Current	Ifp		500		mA		
Reverse Voltage	Vr		5		V		
LED Junction Temperature	Tj		°C				
Operating Temperature	Topr	-3	-30°C ~ +85°C				
Storage Temperature	Tstg	-40)°C ~ +10(O°C	°C		

^{*} Pulse width ≤ 0,1msec duty ≤ 1/10

Tops H Power Full Color LED

Part No.: M11F2001

Customer:

2010 Cu

CHKD MATL: DRW: Wilson Wilson TOLERANCE Mason 20.10.2010 Jason DATE APPD: Schumi **FINISH** Sheet No. Jamy 1 from 10

A MEMBER OF EDCON-GROUP

The Power of LED Light

BIN GUIDE / HIGH POWER

Code		Flux Range	Code	Luminous	Flux Range	
Joue	min	max.	Code	min	max.	%
Α	1	2	P2	70	80	7.
В	2	2,5	M1	80	90	/+ s
С	2,5	3,2	M2	90	100	Flux is +/- 15%
D	3,2	4	N1	100	110	S F
E	4	5	N2	110	120	Tolerance of measurement of luminous
F	5	6,2	P1	120	130	Ē
G	6,2	7,7	P2	130	140	of It
Н	7,7	9,6	Q1	140	150	ent
J	9,6	12	Q2	150	160	e.
K	12	15	R1	160	170	asuı
L1	15	19	R2	170	180	ű
L2	19	24	S1	180	200	Jo a
M1	24	30	S2	200	220	nce
M2	30	40	T1	220	240	lera
N1	40	50	T2	240	260	_0T
N2	50	60	U1	250	280	

Code	CCT	Range	Code	CCT Range		
Code	Min	Max	Code	Min	Max	
А	2700	2900	M	4900	5100	
В	2900	3100	N	5100	5500	
С	3100	3300	Р	5500	6000	
D	3300	3500	Q	6000	6500	
E	3500	3700	R	6500	7000	
F	3700	3900	S	7000	7500	
G	3900	4100	T	7500	8000	
Н	4100	4300	U	8000	9000	
J	4300	4500	V	9000	10000	
K	4500	4700	W	10000	12000	
L	4700	4900				

20.10.2010

2 from 10

Tolerance of measurement of CCT is +/-100K.

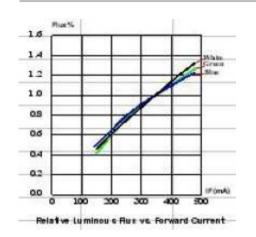
P1	(60	7	70												_
			В		Н	G	i/E		F	,	Y	C)/P	R	/U	1
Color	Code	Min	max	Min	max	Min	max	Min	max	Min	max	Min	max	Min	max]
	00	450	455	490	495	515	520	560	565	580	583	600	605	620	625	Ī
)1	455	460	495	500	520	525	565	570	583	586	605	610	625	630	
)2	460	465	500	505	525	530	570	575	586	589	610	615	630	635	1
)3	465	470	505	510	530	535	575	580	589	592	615	620	635	640	
)4	470	475	510	515	535	540			592	595			640	645	1
)5	475	480			540	545			595	598			645	650	
	06	480	485			545	550							650	655] ;
)7	485	490			550	555							655	660]
)8					555	560							660	665	
DR	RW:	Ja	son	CH	IKD	Wil	son	MA	۱TL:	Wil	son	TOLE	RANCE	Ma	son	
AP	PD:	Sch	numi					FIN	IISH	Ja	my				Shee	t l

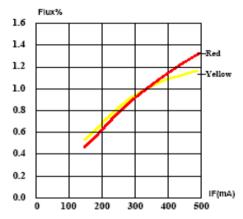
DATE

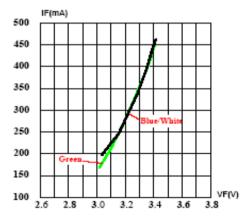
Tops H Power Full Color LED

Part No.: M11F2001

Customer:






A MEMBER OF EDCON-GROUP

Typical Electrical / Optical Characteristics Curves (Ta=25°C Unless otherwise noted)

Relative Luminous Flux vs. Forward Current

Forward Current vs. Forward Voltage

500	IF(mA)											
	Г												
450	\vdash	\vdash	Н			\vdash	\vdash	\vdash	1	_			
400	L							L	Z				
								/					
350	\vdash	\vdash	Н	_	\vdash	\vdash		/	\vdash	Н	Н		
300	L						/						
						M	7						
250	\vdash	Н		Red	כו	/	Н	\vdash		Н			
200	L				4								
				/	r	Ye	llov	r					
150	\vdash	\vdash	Н			\vdash	Н	\vdash	\vdash	Н	Н		
100	L												VF(V)
]	1.8	2	.0	2	.2	2	.4	2	.6	2	.8	3	.0
Forward Current vs. Forward Voltage													

Forward Current v	s. Forward Voltage
-------------------	--------------------

400			70		100			
200	-	_	$\overline{}$	$\overline{}$	-			
300		-	4	1				
250	Ring-Amb		\Rightarrow	7	\mathcal{T}		5	
200	Ring-Alma			1	IL,	8		
150	Ring-Ard	10000	- 8		111	$\overline{}$		\forall
100			00		1	Th.	4	
50		- 6		-	- 25	44		

Current Derating Curves

Code	Forward Vo	oltage Rank
Code	Min.	Max.
Α	1,6	1,8
В	1,8	2,0
С	2,0	2,2
D	2,2	2,4
E	2,4	2,6
F	2,6	2,8
G	2,8	3,0
Н	3,0	3,2

Tolerance of measurement of forward voltage is +/-0,1V

Code	Forward Voltage Rank					
Code	Min.	Max.				
J	3,20	3,40				
K	3,40	3,60				
L	3,60	3,80				
M	3,80	4,00				
N	4,00	4,20				
Р	4,20	4,40				
Q	4,40	4,60				
R	4,60	4,80				

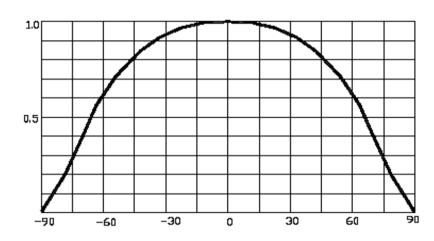
Tops H Power Full Color LED

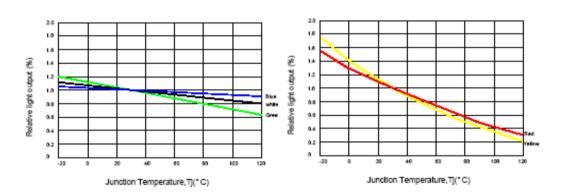
M11F2001 Part No.:

Customer:

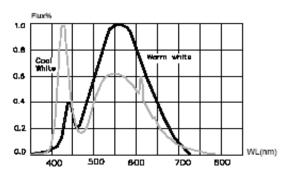
DRW:	Jason	CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason	DATE	20.10.2010
APPD:	Schumi			FINISH	Jamy		Shee	t No.	3 from 10

The Power of LED Light

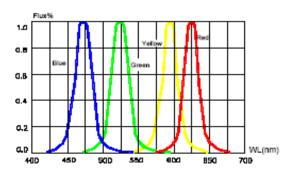

REACH



Typical Representative Spatial Radiation Paddern of single LED



Angular Displacement(degress)


Light Output Characteristics

Wavelength Characteristics

Relative luminous flux vs. wavelength

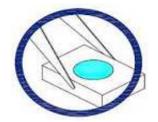
	2
10	Ċ
0	Cu

	H Power Color LED
4 NIa .	MAAFOOOA

Part No.: **M11F2001**

Customer:

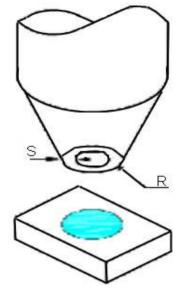
DRW: CHKD Wilson MATL: Wilson TOLERANCE Mason 20.10.201 Jason DATE APPD: **FINISH** Sheet No. 4 from 10 Schumi Jamy



Handling Informations

- 4. The outer diameter of the TOP LED pickup nozzle should not exceed the size of the LED to prevent air leaks. The inner diameter of the nozzle should be as large as possible.
- 5. A pliable material is suggested for the nozzle tip to avoid scratching or damaging the LED surface during pickup.
- 6. The dimensions of the component must be accurately programmed in the pick-and-place machine to insure precise pickup and avoid damage during production.

Compare to epoxy encapsulant that is hard and brittle, silicone is softer and flexible. Although ist characteristic significantly reduces thermal stress, it is more susceptible to damage by external mechanical force. As a result, special handling precautions need to be observed during assembly using silicone encapsulated LED products. Failure to comply might leads to damage and premature failure of th LED.


1. Handle the component along the side surfaces by using forceps or appropriate tools

2. Do not directly touch or handle the silicone lens surfance. It may damage the internal circuitry.

3. Do not stack together assembled PCBs containing exposed LEDs. Outside impact may scratsch the silicone lens or damage the internal circuitry.

Tops H Power				
Full Color LED				

Part No.: **M11F2001**

Customer:

DRW:	Jason	CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason	DATE	20.10.2010
APPD:	Schumi			FINISH	Jamy		Shee	t No.	5 from 10

Moisture Proof Packing

In Order to prevent moisture absorption into DIAMOND = TOP LED / XEON POWER during the transportation and storage. DIAMOND TOP-LED / XEON-POWER LED is packed in a moisture barrier bag. Desiccants and humidity indicator are packed together with DIAMOND TOP-LED / XEON-POWER LED as the secondary protection. The indication of humidity card provides the information of humidity within TOP Packing.

Storage

Shelf life in original sealed bag in storage condition of <40°C and 90% RH is 12 mounths. Baking is required whenever shelf life is expired. Before opening the packaging please check wether bag leak air or not. After opening the DIAMOND TOP-LED / XEON POWER LED must be storad under the condition <30°C and 60% RH. Under this condition DIAMOND TOP-LED / XEON POWER LED must be used (subject to reflow) within 24-hours after bag opening, and re-baking is required when exceeding 24 hours. For baking, place DIAMOND TOP-LED / XEON POWER LED in oven at temperature 75°C +/-5°C and relative humidity <10%RH, for 24 hours. Take out the material from packaging bag for re-bake. Do not open the door of oven frequently during the baking process.

Manual soldering (We do not recommend this method strongly).

No mechanical stress should be exerted on the resin portion of DIAMOND TOP-LED / XEON POWER during soldering.

Handling of DIAMOND TOP-LED / XEON POWER LED should be done when the package has been cooled down to below 40°C or less. This is to prevent the DIAMOND TOP-LED / XEON POWER failures due the thermal-mechanical strss during handling.

Reflow soldering should not be done more than one time.

No stress should be exerted on the package during soldering.

Electrostatic Discharge and Surge current.

Electrostatic discharge (ESD) or surge current (EOS) may damage LED.

Precautions such as ESD wrist strap, ESD shoe strap or antistatic gloves must be worn whenever handling DIAMOND TOP-LED / XEON POWER LED.

All devices, equipment and machinery must be prpertly grounded.

It is recommended to perform electrical test to screen out ESD failures in final inspection.

It is important to eliminate the possibility of surge current during circuity design.

Heat Management

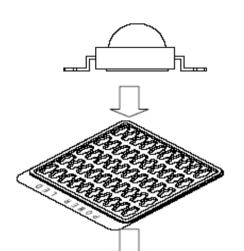
Heat manegement of DIAMOND TOP-LED / XEON POWER must be taken into into consideration during the design stage of DIAMOND TOP-LED / XEON POWER LED application. The current should be de-rated appropriately by refering to the de-rating curve attached on each product specification.

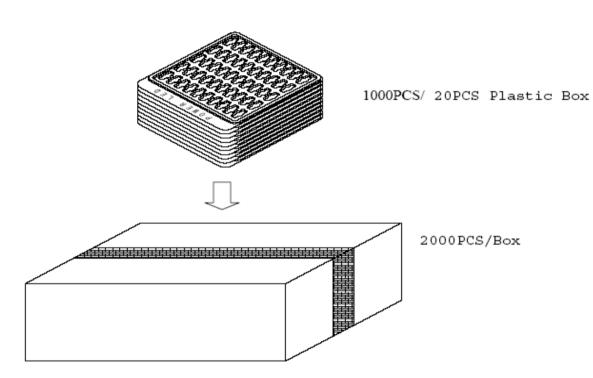
Tops H Power
Full Color LED

Part No.: M11F2001

Customer:

Wilson DRW: CHKD MATL: Wilson **TOLERANCE** Mason 20.10.2010 Jason DATE APPD: Schumi **FINISH** Sheet No. 6 from 10 Jamy





Packing Specifications

50PCS/ Plastic Box

										Part No.:
DRW:	Jason	CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason	DATE	20.10.2010	Customor
APPD:	Schumi			FINISH	Jamy		Sheet No.		7 from 10	Customer:

email: info@edcon-components.com

Tops H Power Full Color LED

M11F2001

Ordering Informations

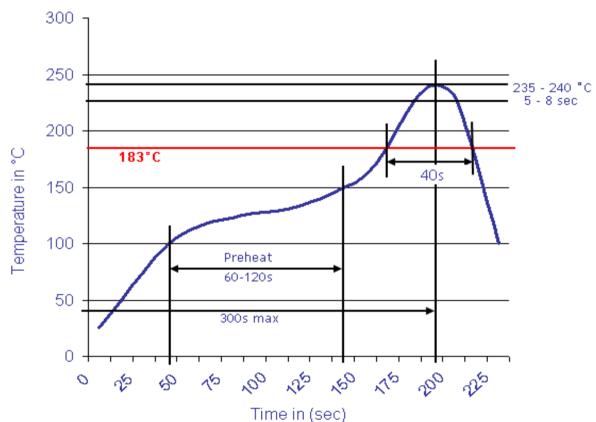
Serie	Color Code	ROHS	Packing				
M11F2001	FC	R	TR	·	_		

FC	R = ROHS	TR= TAPE		
=	Conform	REEL		
RGB	N= NON	BU = Bulk-		
(Full Color)	ROHS	Ware		

Tops H Power Full Color LED

Part No.: **M11F2001**

DRW: CHKD Wilson MATL: Wilson Mason 20.10.2010 Jason TOLERANCE DATE Customer: APPD: Schumi FINISH Jamy Sheet No. 8 from 10



Soldering Profile Curve

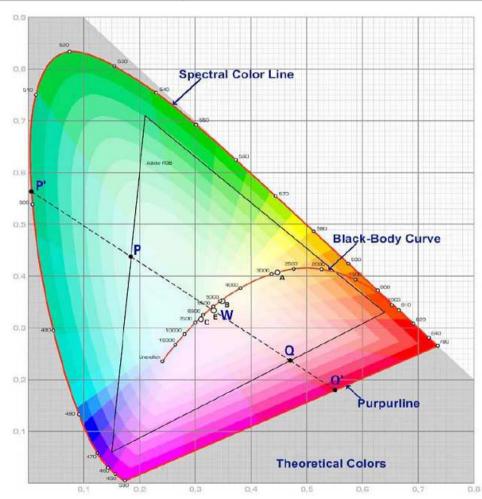
Classification Reflow Profile (JEDEC J-STD-020C)

MATL: DRW: CHKD Wilson Wilson TOLERANCE Mason DATE 20.10.2010 Jason APPD: FINISH Schumi Sheet No. 9 from 10 Jamy

Tops H Power Full Color LED

Part No.: M11F2001

Customer:



Spectral Color Curve

Tops H Power	
Full Color LED	

Part No.: **M11F2001**

Customer:

MATL: DRW: CHKD Wilson Mason 20.10.2010 Jason Wilson TOLERANCE DATE APPD: FINISH Schumi Sheet No. 10 from 10 Jamy

