

Part-No.

M11E9001

Dominant

Wavelength (nm)

or CCT(K)

Тур

7000

3. Tolerance of measurement of CCT (Correlated color temperature +/- 200K

Min

6000

1. Tolerance of measurement of luminous flux : +/-15%

4. Tolerance of measurement of forward voltage +/-0,1V

Luminious Flux

(lm)

Тур

200

 ∞

ιci

Rever-

se Cur-

rent

(µA)

max

10

50%

Power

Angle

Тур

120

0

2. Tolerance of measurement of dominant Wavelength : +/-1nm

0~+0.07 Ma

Typical Electrical & Optical Characteristics (IF=700mA and Ta=25°C)

Min

180

Technical Dimensions

Forward Voltage

(V)

Max

4.0

4

10

Min

3.3

Features

Highest Luminous Flex Long Lifetime Operation Super Energy Efficency Superior UV Resistance Superior ESD protection

Absulut Maximum Ratings (Ta=25°C)

Items	Symb ols	Absulut maximum Rating	Unit
	OIS	Cool White	
Power Dissipation	Pd	3200	mW
Forward Current	lf	800	mA
Peak Forward Current	lfp	1000	mA
Reverse Voltage	Vr	5	V
LED Junction Temperature	Tj		°C
Operating Temperature	Topr	-30°C ~ +85°C	°C
Storage Temperature	Tstg	-40°C ~ +100°C	С°

* Pulse width \leq 0,1msec duty \leq 1/10

		Ai	node(+)		Cathode(-)				Tops F	Power LED
		1								Part No.:	M11E9001
DRW:	Jason	CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason	DATE	12.07.2010	Customer:	
APPD:	Schumi			FINISH	Jamy		Shee	t No.	1 from 10		

www.edcon-components.com

Copyright by EDCON-COMPONENTS

email: info@edcon-components.com

Code	L	uminous	Flux Ran	ge	Code	Lu	uminous l	Flux Ran	ge	1			Co	ala		CCT F	Range		0.	ode
Code	m	nin	m	ax.	Code	m	in	m	ax.	%				ide	Μ	in	Μ	lax		N
А		1	:	2	P2	7	0	8	80	+/- 15%			ŀ	ł	27	00	29	900	1	VI 49
В	:	2	2	,5	M1	8	0	ç	90	/+ s			E	3	29	00	31	100	1	N 51
С	2	.,5	3	,2	M2	9	0	1	00	i xn			()	31	00	33	300	ŀ	P 55
D	3	,2		4	N1	1(00	1	10	measurement of luminous Flux is			Γ)	33	00	35	500	(Q 60
Е		4	ł	5	N2	1 [.]	10	1:	20	nor			E	Ξ	35	00	37	700	F	R 65
F		5	6	,2	P1	12	20	1;	30	,ier			F	-	37	00	39	900	ç	S 70
G	6	,2	7	,7	P2	1:	30	1	40	of Ir			(3	39	00	41	100	-	T 75
Н	7	,7	9	,6	Q1	14	40	1	50	ent			ŀ	1	41	00	43	300	ι	U 80
J	9	,6	1	2	Q2	1:	50	1	60	em				J	43	00	45	500	١	V 90
K	1	2	1	5	R1	16	60	1	70	asui			ł	<	45	00	47	700	٧	N 10
L1	1	5	1	9	R2	17	70	1	80	me			L	-	47	00	49	900		
L2	1	9	2	4	S1	18	30	2	00				Tolerand	e of mea	suremen	t of CCT i	s +/-100	K.		
M1		24	3	0	S2	20	00	2	20	Tolerance of										
M2		30		0	T1		20		40	lera										
N1		10		0	T2		40		60	To										
N2		50		0	U1	2	50	2	80											
P1	6	60		0												L				
			В		H	G	/E		F	,	Y	Q	/P	R	/U	_				
	Code	Min	max	Min	max	Min	max	Min	max	Min	max	Min	max	Min	max	t of 1nm				
	00	450	455	490	495	515	520	560	565	580	583	600	605	620	625	1eni +/+				
	01	455	460	495	500	520	525	565	570	583	586	605	610	625	630	uren 1 is				
	02	460	465	500	505	525	530	570	575	586	589	610	615	630	635	asungth				
		465	470	505	510	530	535	575	580	589	592	615	620	635	640	f me /ele				
	03						E 40			592	595			640	645	a) ol				
D)4	405	475	510	515	535	540			002	000					e≥				
D	04 05		475 480	510	515	535 540	540 545			595	598			645	650	ance ant w				
D D D	04 05 06	470 475 480	480 485	510	515	540 545	545 550							650	650 655	olerance minant w				Tops
	04 05 06 07	470 475	480	510	515	540 545 550	545 550 555							650 655	650 655 660	Tolerance of measurement of dominant wavelength is +/-1nm				_
	04 05 06 07 08	470 475 480 485	480 485 490			540 545 550 555	545 550 555 560			595	598			650 655 660	650 655 660 665					Tops Part No.:
	04 05 06 07 08 RW:	470 475 480 485 Ja	480 485		515	540 545 550 555	545 550 555		TL:	595 Wil		TOLEF	RANCE	650 655	650 655 660 665	DA	TE	12.07.1 2 from		_

BIN GUIDE / HIGH POWER

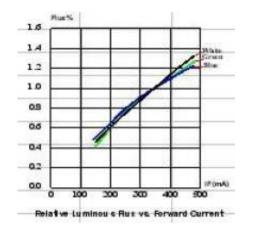
Code	Code CCT Ra		Code	CCT	Range
Code	Min	Max	COde	Min	Max
А	2700	2900	М	4900	5100
В	2900	3100	N	5100	5500
С	3100	3300	Р	5500	6000
D	3300	3500	Q	6000	6500
E	3500	3700	R	6500	7000
F	3700	3900	S	7000	7500
G	3900	4100	Т	7500	8000
Н	4100	4300	U	8000	9000
J	4300	4500	V	9000	10000
К	4500	4700	W	10000	12000
L	4700	4900			

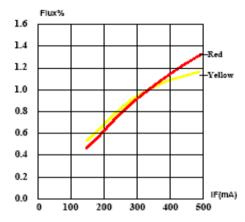
nfo@edcon-components.com ema

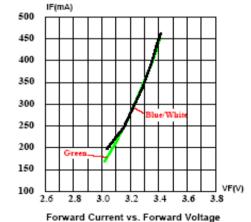
Tops Power LED

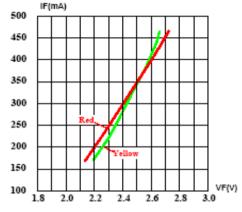
M11E9001

Copyright by EDCON-COMPONENTS





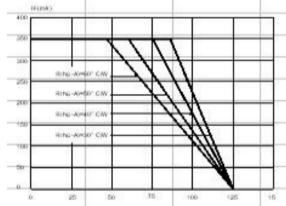

The Power of LED Light


Typical Electrical / Optical Characteristics Curves (Ta=25°C Unless otherwise noted)

Relative Luminous Flux vs. Forward Current

Forward Current vs. Forward Voltage

Code	Forward Vo	oltage Rank
Code	Min.	Max.
J	3,20	3,40
К	3,40	3,60
L	3,60	3,80
М	3,80	4,00
N	4,00	4,20
Р	4,20	4,40
Q	4,40	4,60
R	4,60	4,80


Tops Power LED 75 25 50 100 125 15 Part No.: M11E9001 CHKD Wilson MATL: TOLERANCE 12.07.2010 Wilson Mason DATE Jason Customer: FINISH Schumi Sheet No. 3 from 10 Jamy

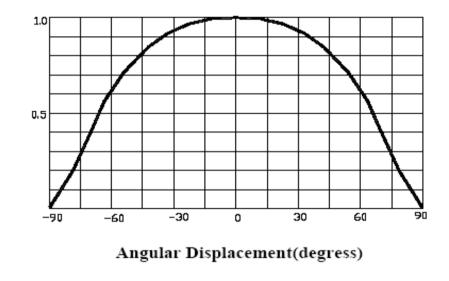
APPD: www.edcon-components.com

DRW:

Copyright by EDCON-COMPONENTS

email: info@edcon-components.com

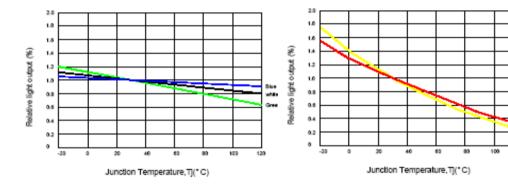
Code	Forward Vo	oltage Rank
Code	Min.	Max.
A	1,6	1,8
В	1,8	2,0
С	2,0	2,2
D	2,2	2,4
E	2,4	2,6
F	2,6	2,8
G	2,8	3,0
Н	3,0	3,2

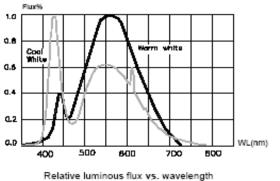

Tolerance of measurement of forward voltage is +/-0,1V

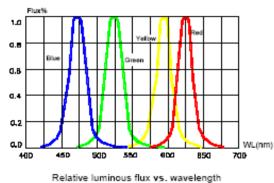
Current Derating Curves

120

Typical Representative Spatial Radiation Paddern of single LED






The Power of LED Light

Light Output Characteristics

Wavelength Characteristics

Tops Power LED Part No.: M11E9001 CHKD Wilson MATL: Wilson TOLERANCE Mason 12.07.2010 Jason DATE Customer: FINISH Sheet No. 4 from 10 Schumi Jamy

www.edcon-components.com

DRW:

APPD:

Copyright by EDCON-COMPONENTS

email: info@edcon-components.com

Handling Informations

- 4. The outer diameter of the TOP LED pickup nozzle should not exceed the size of the LED to prevent air leaks. The inner diameter of the nozzle should be as large as possible.
- 5. A pliable material is suggested for the nozzle tip to avoid scratching or damaging the LED surface during pickup.
- 6. The dimensions of the component must be accurately programmed in the pick-and-place machine to insure precise pickup and avoid damage during production.

Compare to epoxy encapsulant that is hard and brittle, silicone is softer and flexible. Although ist characteristic significantly reduces thermal stress, it is more susceptible to damage by external mechanical force. As a result, special handling precautions need to be observed during assembly using silicone encapsulated LED products. Failure to comply might leads to damage and premature failure of th LED.

1. Handle the component along the side surfaces by using forceps or appropriate tools

2. Do not directly touch or handle the silicone lens surfance. It may damage the internal circuitry.

\bigcap	
\sum	1
	R
	\geq

3. Do not stack together assembled PCBs containing exposed LEDs. Outside impact may scratsch the silicone lens or damage the internal circuitry.

Tops Power LED

M11E0001

Part No ·

										Tart NO	
DRW:	Jason	CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason	DATE	12.07.2010	Customor	
APPD:	Schumi			FINISH	Jamy		Shee	t No.	5 from 10	Customer:	

www.edcon-components.com

Copyright by EDCON-COMPONENTS

email: info@edcon-components.com

Moisture Proof Packing

In Order to prevent moisture absorption into DIAMOND = TOP LED / XEON POWER during the transportation and storage. DIAMOND TOP-LED / XEON-POWER LED is packed in a moisture barrier bag. Desiccants and humidity indicator are packed together with DIAMOND TOP-LED / XEON-POWER LED as the secondary protection. The indication of humidity card provides the information of humidity within TOP Packing.

Storage

Shelf life in original sealed bag in storage condition of <40°C and 90% RH is 12 mounths. Baking is required whenever shelf life is expired. Before opening the packaging please check wether bag leak air or not. After opening the DIAMOND TOP-LED / XEON POWER LED must be storad under the condition <30°C and 60% RH. Under this condition DIAMOND TOP-LED / XEON POWER LED must be used (subject to reflow) within 24-hours after bag opening, and re-baking is required when exceeding 24 hours. For baking, place DIAMOND TOP-LED / XEON POWER LED in oven at temperature 75°C +/-5°C and relative humidity <10%RH, for 24 hours. Take out the material from packaging bag for re-bake. Do not open the door of oven frequently during the baking process.

Manual soldering (We do not recommend this method strongly).

No mechanical stress should be exerted on the resin portion of DIAMOND TOP-LED / XEON POWER during soldering.

Handling of DIAMOND TOP-LED / XEON POWER LED should be done when the package has been cooled down to below 40°C or less. This is to prevent the DIAMOND

TOP-LED / XEON POWER failures due the thermal-mechanical strss during handling.

Reflow soldering should not be done more than one time.

No stress should be exerted on the package during soldering.

Electrostatic Discharge and Surge current.

Electrostatic discharge (ESD) or surge current (EOS) may damage LED.

Precautions such as ESD wrist strap, ESD shoe strap or antistatic gloves must be worn whenever handling DIAMOND TOP-LED / XEON POWER LED.

All devices, equipment and machinery must be prpertly grounded.

It is recommended to perform electrical test to screen out ESD failures in final inspection.

It is importate to eliminate the possibility of surge current during circuity design.

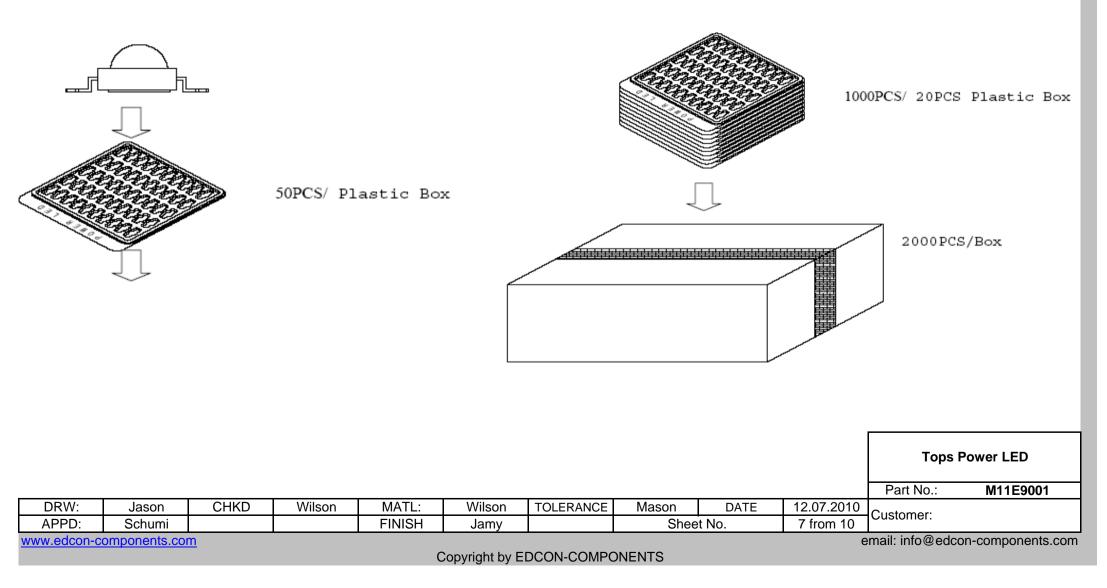
Heat Management

Heat management of DIAMOND TOP-LED / XEON POWER must be taken into into consideration during the design stage of DIAMOND TOP-LED / XEON POWER LED application. The current should be de-rated appropriately by refering to the de-rating curve attached on each product specification.

										Tops I	Power LED
										Part No.:	M11E9001
DRW:	Jason	CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason	DATE	12.07.2010	Customer:	
APPD:	Schumi			FINISH	Jamy		Shee	t No.	6 from 10	Cusioniei.	
www.edcon-c	omponents.cor	n							e	mail: info@edco	on-components.com

Copyright by EDCON-COMPONENTS

email: info@eucon-components.com



Packing Specifications

A MEMBER OF EDCON-GROUP

The Power of LED Light

Ordering Informations

Serie	Color Code	ROHS	Packing				
M11E9001	CW	R	TR				

CW	R= ROHS	TR= TAPE
=	Conform	REEL
Cool White	N= NON	BU= Bulk-
	ROHS	Ware

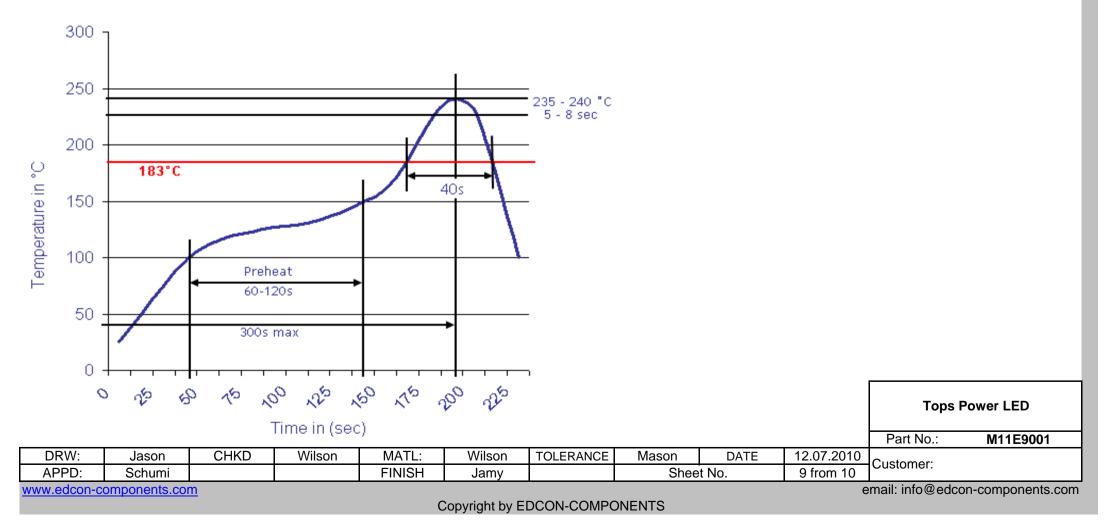
										Part No.:	M11E9001
DRW:	Jason	CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason	DATE	12.07.2010	Customor	
APPD:	Schumi			FINISH	Jamy		Shee	et No.	8 from 10	Customer:	

www.edcon-components.com

Copyright by EDCON-COMPONENTS

email: info@edcon-components.com

Tops Power LED



Soldering Profile Curve

Classification Reflow Profile (JEDEC J-STD-020C)

Spectral Color Curve

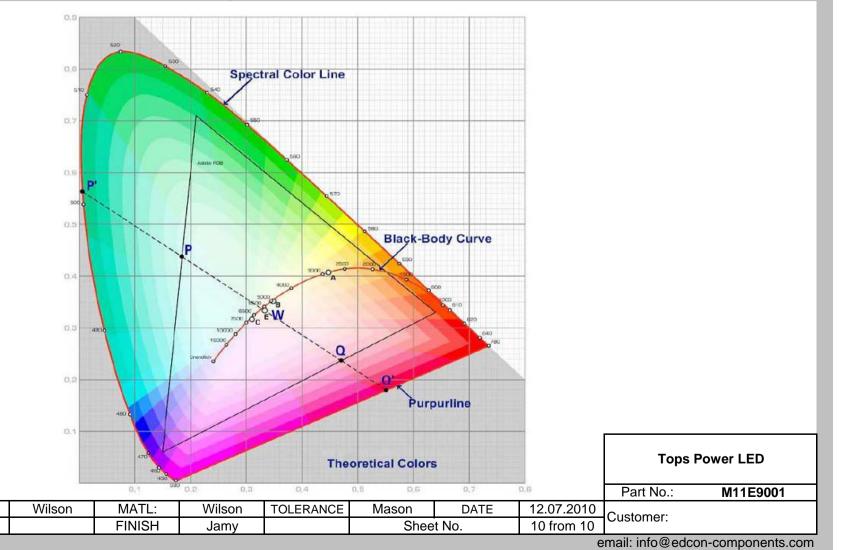
DRW:

APPD:

CHKD

Jason

Schumi


www.edcon-components.com

COMPONENTS A MEMBER OF EDCON-GROUP

The Power of LED Light

Copyright by EDCON-COMPONENTS