

DATA SHEET

Super High Voltage Disc Ceramic Capacitor

Serie: 123001

Range 153= 15000pf

Tolerance M= ±20%

Voltage 4000 Volt

Material Character. 5U

Body Diam. max.23mm

Pitch 7,5mm

Body Thickn. max.6,5mm

Super High Voltage Disc Ceramic Capacitor

Serie No.: **I23001**

Customer:

DRW: **CHKD** MATL: TOI FRANCE Jason Wilson Wilson Mason DATE 08.09.2012 APPD: Schumi **FINISH** Sheet No. 1 from 14 Jamy

Features

Wide rated Voltage range, wide nominal capacitance range Flame retardent, insulating coating applied Recomended Application Filter circuit of high voltage power High voltage circuit of television set and monitor

High voltage circuit of various electronic equipment

Characteristics	Temp.Char. SL	Temp.Char. Y5P	Temp.Cl	nar. Y5U	Temp.C	har. Y5V			
Operating Temperature		30°C	~ +85°C						
Rated Voltage	4KVDC ~ 6KVDC	4KVDC ~ 15KVDC	4KVDC ~	15KVDC	4KVDC ~	15KVDC			
Withstanding Voltage		1,5 times related voltage							
Capacitance	Within the speci	Within the specified tolerance, testing at 25°C, 1Vrms and 1KHz (at 1MHz for SL products							
Capacitarice	10 ~ 330pf	100 ~ 2200pf	470 ~ 3300pf		1000 ~ 10000pf				
Dissipation Factor	Cr<30pf, Q≥ 400+20Cr Cr≥30pf, Q≥1000	tg ≤ 2,5%		tg ≤	3,5%				
Insulation Resistance		Charge at 500VDC for 6	0 seconds, Rj	≥ 1000MΩ					
Temperature	Temperatur Cha	rarcteristics Code	SL	Y5P	Y5U	Y5V			
Characteristics	Temperatur Coe	. +100 ~ - 1000 10-6/°C	. ± 10%	.+22 ~ +56%	.+22 ~ +82%				

Rated Capacitance

The first and second digits identify the first and second significant figures of the capacitance, the third digit identifies the multiplier. The capacitance unit is pf,

Capacitance Tolerance

Letter Symbol	·		Capacitance Tolerance	
С	±0,25pf	K	±10%	
D	±0,5pf	M	±20%	
J	±5%	Z	.+80 ~ -20%	

DRW:	Jason	CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason	DATE	08.09.2012
APPD:	Schumi			FINISH	Jamy		Shee	et No.	2 from 14

Super High Voltage Disc Ceramic Capacitor

Part No.: **I23001**

Customer:

Standard atmospheric condition

Temperature: 15~35°C Relative Humidity: 45~75%

Atmospheric pressure: 86~106KPa (860~1060mbar

Operating and storage temperature range

Operating Temperature:

Temperature	Lowest Operating	Highest Operating
Characteristics	Temperature	Temperature
SL	25°C	.+85°C
COH	25°C	.+85°C
Y5P	25°C	.+85°C
Y5U	25°C	.+85°C
Y5U	25°C	.+85°C
Y5V	25°C	.+85°C
Z5U	10°C	.+85°C
Z5V	10°C	.+85°C
YR	25°C	.+125°C

Storage Temperature Range: -10 to + 40°C

Characteristics and test methods

Electrical characteristics and test methods

Jamy			Shee	t No.	3 from 14	Gustonier.	
Wilson	TOLEF	RANCE	Mason	DATE	08.09.2012	Customer:	· ————————————————————————————————————
		,	wrapped on env	elope for 1 to 5	seconds.	•	gh Voltage Disc lic Capacitor l23001
Voltage Pı	roof	540V a 1000V t 3000V shall be voltage 1300 betw	oltage of 300% ind 500V) 200% to 2000V), 175% (), or 150% rated e applied betweens of 250% rated bV (fort 500V, 11 veen leads conn	rated voltage (for rated voltage (for Den leads for 1 to voltage (for 50) KV and over) sheeted together a	or rated voltage for rated voltage CG or SBBLC) 5seconds. The capacitors) or all be applied and metal foil	No break	down or flashover
Insulatio Resistan		voltage	ulation resistand (for Vr≤500VDC VDC)within 50±	; 500VDC (for	1000M Ω mir Ω mir	1000M n (for SBBLC)	
_	Quality factor or The quality factor or dissipation factor shall be measured at the same conditions ab above					Cr-rated cap 2,5% max. (f 0,5% 3,5% max. 5%max. (for s	oo (forCr<30pf) cocitance in unit of pf for Y5P,Y5U and Z5U max. (for YR) (for Y5V and Z5U) SBBLC Y5V and Y5U) . (for SBBLC Y5P)
							20Cr (forCr<30pf)
Capacitano tolerano		and 1V	pacitance shall I rms (Class1), 1k Vrms (for Calss	(Hz and 1Vrms		Refer to	individual sheet

DRW:JasonCHKDWilsonMATL:WilsonTOLERANCEMasonDATE08.09.2012APPD:SchumiFINISHJamySheet No.3 from 14

1 20 ± 2°C 4 85 ±2°C (125±2°C for YR) 225 ± 2°C 5 20 ± 2°C Refer to specifications	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Temperature Characteristics $ \begin{array}{cccccccccccccccccccccccccccccccccc$	e coefficient:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ecification sheet
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
The temperature coeffizient and the capacitance drift shall be calculated by the following formulas. (Cm - Co) =	or ± 0,05pf
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	is greater)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Temperature Characteristics $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Temperature Characteristics $C_0 = C_1 = C_5 - C_0$ $C_5 - C_1$ $C_5	I
Characteristics = $\frac{C_0 - C_1}{c_5 - C_0}$ or $\frac{C_5 - C_1}{c_5 - C_0}$ tics	0
= or ucs	
Co Co Co Y5P	change
N/I	± 10%
Where Co Capacitance at step 3 YR Y5U	± 15% to -30% ± 22% to -56%
Co Capacitance at step 3 Cm Capacitance at step 2 and/or step 4 Z5U	± 22% to -56%
C1,C5 Capacitance at step 1 and step 5	± 22% to -82%
To Measuring temperature at Step 3	± 22% to -82%
T Measuring temperature at Step 2 and /or step 4	± 22 /0 tO -O2 /0
Pre-tratement:	
The capacitor shall be stored at a temperature of 55 ±2°C and a relative humidity of 20% or less for 16 to 24 hours.	
And then the capacitor shall be allowed immediately to cool in container using appropriate dryer such as activated carbon, silica gel	
The capacitor body shall be held in such a manner so that axis of the lead is vertical. The tensile force of 10N (for Ø 0.6mm lead).	acitor shal be no
	d the lead shall be
capacitor for 10 ±1 seconds. no loos	eneed or cut off.

Ceramic	Capacitor
Part No.:	I23001

WilsonMATL:WilsonTOLERANCEMasonDATE08.09.2012Customer:FINISHJamySheet No.4 from 14

Jason

Schumi

CHKD

DRW:

APPD:

Super High Voltage Disc

Bending	The capacitor is held in such a manner so that axis of the lead is vertical. As mass applying a force of 5N (for Ø 0,6mm lead) or 2,5N (for Ø 0,5mm lead) is then suspended from the end of the lead. The body of the capacitor is then inclined within a period of 2 to 3 seconds, through an angle of approximately 90° in the vertical plane and then returned to its initial position over the same period of time. This operation constitutes one bend. The lead shall be subjected to a total of 2 alternating bends in to opposite directions.	The lead shall be no broken.			
Endurance characte	eristics and test methods.				
Solderability	Solder temperature: 235 ±5°C Immersion time; 2 ± 0,5 seconds Immersion speed: 25 ± 6mm/s	A new uniform coating of the surface being imm	of solder shall cover a minimum of 95% mersed.		
	Frequency range: 10~55Hz.	Apperance	No visible damage		
Vibration	Amplitutde (total excursion); 1,5mm	Capacitance change	Within specified tolerance		
Vibration	Total duration: 6hours. This motion shall be aplied for 2 hours in aech of three mutually perpendicular directions.	Quality factor or dissipation factor	Refer to clause 5.1.2		
	Solder temperature and immersion time: 260 ± 5°C, 10 ± 0,5 seconds.	Apperance	No visible damage		
Resistance to Soldering Heat	The immersing depth shall be a position 1,27mm from the seating plane.	Capacitance change	± 2,5% or ± 0,25pf (whichever is greater, for class I). ± 5% (for Y5P and YR). ±15% (for Y5U and Z5U). ±20% (for Y5V and Z5V).		
	Post treatment: The capacitor shall be preversed at the standard atmospheric condition for 24 ±	Voltage Proof (for			
	2hours.	between leads only)			
Solvent resistance	The capacitor shall be immersed into isopropylalcohol. For 30 ± seconds.	Apperance	No visible damage legible marking		

										Ceramic	Capacitor
										Part No.:	I23001
DRW:	Jason	CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason	DATE	08.09.2012	Customer:	
APPD:	Schumi			FINISH	Jamy		Shee	t No.	5 from 14	Custoffiel.	

www.edcon-components.com

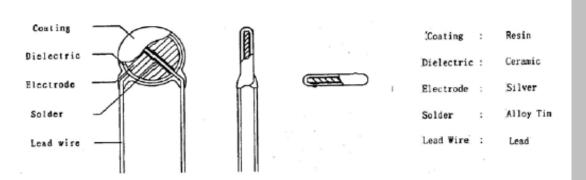
email: info@edcon-components.com

Super High Voltage Disc

							Apperance	e I	No visible damage L	egible marking		
									± 5% or ± 0,5pf (whi	chever is the greater for class 1)		
		The capacitor shall be placed in the test chamber at temperature of -25 \pm 2°C for						nange	± 10% (Y5P and YR)		
								iariye	± 20% (Y5U and Z5	U)		
								:	± 30% (Y5V and Z5)	V)		
								(Q ≥ 200 + 10Cr (for Cr <10pf			
Tomporatura Cval		inutes then at room				titutes one cycle.			Q ≥ 275 + 5/2Cr (fo	≥ 275 + 5/2Cr (for 10pf ≤ CR<30pf		
Temperature Cycle		capacitor shall b					Quality factor	ror	Q ≥ 350 (for Cr ≥ 30	Opf)		
	1116	shall be prevers					dissipation fac	ctor	5% max. (Y5V & Z5)	V)		
		oriali be prevers	ca at the standa	ra auriosprierio e	onation to 24.	£ Z Hours.];	3% max. (Y5P, YR,	Y5U & Z5U)		
								-	7,5% max. (SBBLC)			
							Institution Design	4	1000M Ω min.			
							Insulation Resist	stance	500M Ω min. (SBBLC)			
							Voltage prod	of	For between leads of	only.		
							Apperance		No visible damage	•		
								nange	As the same	s the same		
	The	The capacitor shall be stored for 500 $^{+24}$ hours at a temperature of 40 \pm 2°C and a					Q or DF	,	As the same			
Damp Heat		relative humidity of 90 to 95%. Post treatment: The capacitor shall be preseved for 1 to 2 hours at the standard atmospheric condition.								s1)		
								tance	1000M Ω min (Class II)			
							500M Ω min (Class III)					
							Voltage prod					
							Apperance			•		
		. 16 (15		1. 1 11	50) / I 500) / .		Capacitance Ch	nange				
		voltage that is					Quality factor	_				
Endurance						for over 4KV or of 85 ± 3°C (125	dissipation fac	ctor		The same us before		
	SBBL	C) shall be appli	-	R) for 1000 ⁺⁴⁸ h	•	01 05 ± 3 C (125						
			± 3°C for YE	R) for 1000 - no	ours.		Insulation Resist	stance				
							Voltage prod	of		Super High Voltage Dice		
										Super High Voltage Disc		
										Ceramic Capacitor		
										Part No.: I23001		
DRW:	DRW: Jason CHKD Wilson MATL: Wilson TOLERANCE Mason DATE 08.09.207						Customer:					
APPD: S	chumi			FINISH	Jamy		Sheet	No.	6 from 14	Gustomer.		

Structure and ROHs Materail request

The marking of class I temperature characteristics is the color block on top of the capacitor


Temperature	C	Ο Δ	SL			
Characteristics	Bla	ack	None			
The marking of class II & III temperature characteristics is symbols specified in following table:						
Temperature Y5P Y5U / Z5U Y5V / Z5V YR						
Characteristics	Black	E	F HRR&R			

Capacitance

When rated capacitcance is under 1ßßpf the capacitance marking is value being rated capacitance in unit pf. When rated capacitance is 100pf or over the capacitance marking is made in third digit method.

Tolerance:

The tolerance										
table.										
Tolerance:	±20%									
Symbol	М									
The tolerance	marking for C	lass II & III is t	the symbols sp	ecified in						
following table	e.									
Tolerance:	.+80%, -20%									
Symbol	Z									
Datad Valtage	2-4-41/-14									

Components	Material	ROHS request	Remark	
Coating	Resin	Cd <100ppm;		
Dielectric	Ceramic	Pb <100ppm;	Appendix 1; SGS report	
Electrode	Silver	LIC Ctr DDD DDDC	(Availbale as customer request or See Appendix	
Solder	Alloy tin	HG, Ctr PBBs, PBDEs, N.D	1	
Lead Wire	Lead	14,5		

Rated Voltage

When rated voltage is 50V the voltage marking is symbol "___" under capcitance marking.

When rated voltage is 500V the voltage marking is symbol "__" over capcitance marking.

When rated voltage is 1000Vor over, the voltage marking is symbols 1KV, 2KV, 3KV, 6KV..... over capacitance marking.

Super High	Voltage Disc
Ceramic	Capacitor

Part No.: 123001

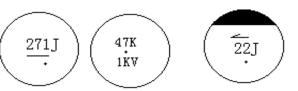
stomer:

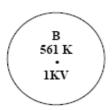
09.2012	Cus
rom 14	Cus

DRW:	Jason	CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason	DATE	08.09.2012
APPD:	Schumi			FINISH	Jamy		Shee	t No.	7 from 14

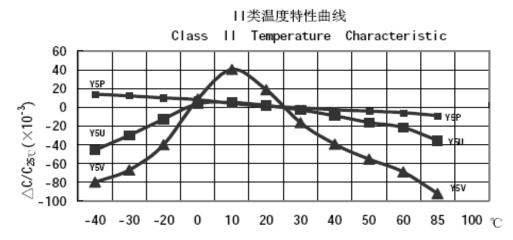
www.edcon-components.com

<u>1</u>C





Example of marking (Class I)




Example of marking (Class II & III) over 1000 Volt

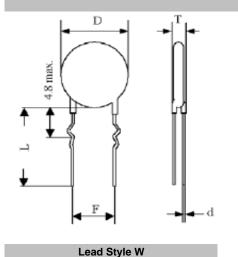
Typical Characteristics Graph

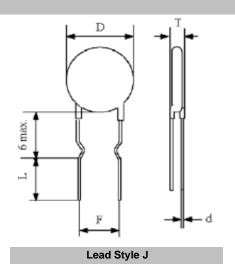
	gh Voltage Disc ic Capacitor
Dort No :	122004

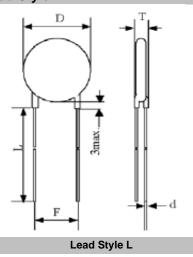
Part No.: | **123001**

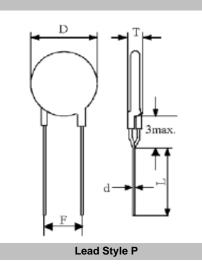
Customer:

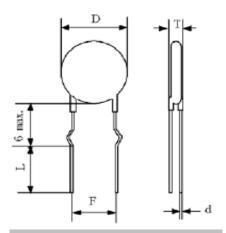
DRW:	Jason	CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason	DATE	08.09.2012
APPD:	Schumi			FINISH	Jamy		Shee	t No.	8 from 14








A MEMBER OF EDCON-GROUP


Lead Style

Super High Voltage Disc Ceramic Capacitor

Part No.: I23001

Customer:

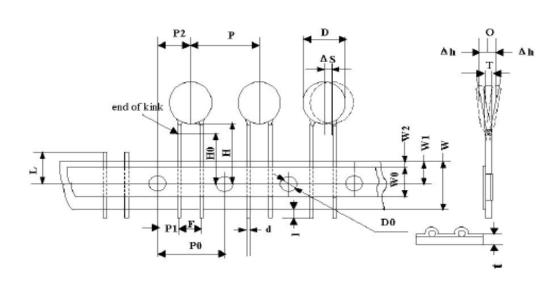
Lead Style K CHKD MATL: Wilson Wilson TOLERANCE Mason 08.09.2012 Jason DATE Schumi FINISH Sheet No. 9 from 14

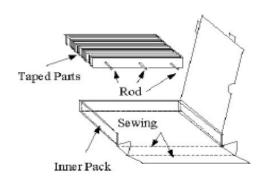
Jamy

www.edcon-components.com

DRW:

APPD:





Packing Style F

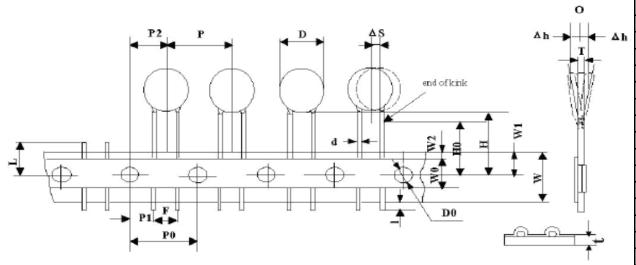
Symbol	Dimension (mm)
P0	12,7 ±0,2
P0	12,7 ±1,0
F	5,0 +0,5/-0,2
P1	3,85 ±0,4
P2	6,35 ±0,4
H0	16,0 ±0,5
Н	20,0 ±0,5
W	18,0 ±0,5
W0	8,0 min
W1	9,0 ±0,3
W2	3,0max.
t	0,7 ±0,2
D	To comply with individual sheet
D0	4,0 ±0,2
d	To comply with individual sheet
I	2,0 max.
L	11 max.
Т	To comply with individual sheet
ΔS	0,5 max
ΔΗ	0,5 max

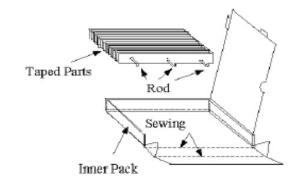
Super High	Voltage Disc
Ceramic	Capacitor

Part No.: **I23001**

Customer:

CHKD Wilson MATL: DRW: Wilson TOLERANCE Mason 08.09.2012 Jason DATE APPD: Schumi FINISH Sheet No. 10 from 14 Jamy





Packing Style V

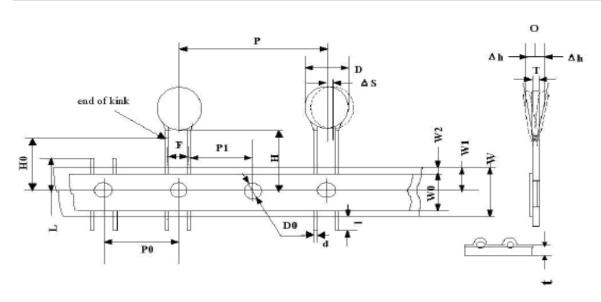
Symbol	Dimension (mm)
P0	15,0 ±0,2
P0	15,0 ±1,0
F	7,5 +0,5/-0,2
P1	3,75 ±0,4
P2	7,5 ±0,4
H0	16,0 ±0,5
Н	20,0 ±0,5
W	18,0 ±0,5
W0	11,5 min
W1	9,0 ±0,3
W2	3,0max.
t	0,7 ±0,2
D	To comply with individual sheet
D0	4,0 ±0,2
d	To comply with individual sheet
I	2,0 max.
L	11 max.
Т	To comply with individual sheet
ΔS	0,5 max
ΔΗ	0,5 max

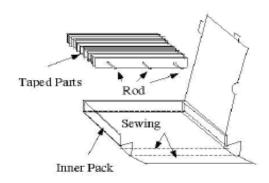
Super High Voltage Disc Ceramic Capacitor

Part No.: I23001

CHKD Wilson MATL: DRW: Wilson TOLERANCE Mason 08.09.2012 Jason DATE APPD: Schumi FINISH Sheet No. 11 from 14 Jamy

Customer:





Packing Style U

Symbol	Dimension (mm)
P0	12,7 ±0,2
P0	25,4 ±1,0
F	10,0 +0,5/-0,2
P1	7,7 ±0,4
P2	
H0	16,0 ±0,5
Н	20,0 ±0,5
W	18,0 ±0,5
W0	11,5 min
W1	9,0 ±0,3
W2	3,0max.
t	0,7 ±0,2
D	To comply with individual sheet
D0	4,0 ±0,2
d	To comply with individual sheet
I	2,0 max.
L	11 max.
Т	To comply with individual sheet
ΔS	0,5 max
ΔΗ	0,5 max

Super High Voltage Disc
Ceramic Capacitor

123001

Part No.: er:

2012	Custome
n 11	Custonic

DRW:	Jason	CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason	DATE	08.09.2012
APPD:	Schumi			FINISH	Jamy		Sheet No.		12 from 14

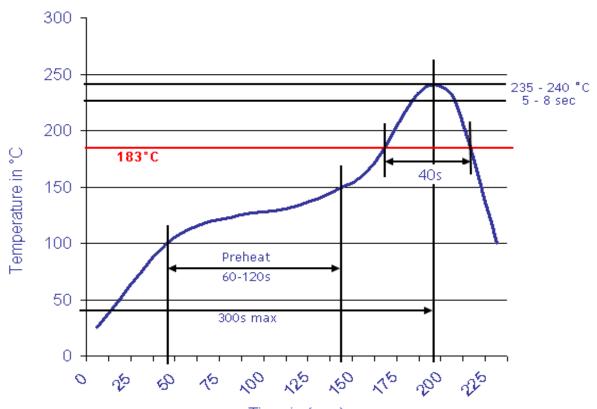
Ordering Informations

Serie		Range	Tolerance Code	Material Code	Voltage Code	Lead Length	Lead Style	Lead Pitch	Lead Diameter	ROHS	Packing Code
	Ī						_				
I23001	-	153	M	5U	U	11	L	D	7	R	BU
		153= 15000pf	M= ±20%	5U= Y5U	U= 4KV	11 = 11mm	L= Style L	D= Pitch 10mm	7= 0,65mm	R= ROHS Conform	BU= Bulk Ware
	•					25= 25mm	P= Style P			N = NON ROHS	TF= Tape Style F
					·		W = Style W			Conform	TV= Tape Style U
							J= Style J				TU= Tape Style U
							K= Style K				

Super High Voltage Disc Ceramic Capacitor

Part No.: **I23001**

MATL: DRW: Jason CHKD Wilson Wilson TOLERANCE Mason DATE 08.09.2012 Customer: APPD: FINISH Sheet No. 13 from 14 Schumi Jamy



Soldering Profile Curve

Classification Reflow Profile (JEDEC J-STD-020C)

Time in (sec)

CHKD Wilson MATL: DRW: Wilson **TOLERANCE** Mason DATE 08.09.2012 Jason APPD: FINISH Sheet No. 14 from 14 Schumi Jamy

Super High Voltage Disc Ceramic Capacitor

Part No.: **I23001**

Customer: