

DATA SHEET

Super High Voltage Disc Ceramic Capacitor

Serie: 123001

Range 152= 1500pf

Tolerance K= ±10%

Voltage 4000 Volt

Material Character. 5P

Body Diam. 13,5mm

Pitch 10mm

Body Thickn. 6,5mm

Super High Voltage Disc Ceramic Capacitor

Serie No.: **I23001**

Customer:

DRW: Jason CHKD Wilson MATL: Wilson **TOLERANCE** Mason DATE 30.04.2011 APPD: Schumi **FINISH** Sheet No. Jamy 1 from 14

Features

Wide rated Voltage range, wide nominal capacitance range Flame retardent, insulating coating applied Recomended Application Filter circuit of high voltage power High voltage circuit of television set and monitor

High voltage circuit of various electronic equipment

Characteristics	Temp.Char. SL	Temp.Char. Y5P	Temp.Cl	har. Y5U	Temp.C	har. Y5V			
Operating Temperature		30℃ ~ +85℃							
Rated Voltage	4KVDC ~ 6KVDC	4KVDC ~ 15KVDC	4KVDC ~	15KVDC	4KVDC ~	15KVDC			
Withstanding Voltage		1,5 times related voltage							
Capacitance	Within the speci	fied tolerance, testing at 25℃	, 1V rms and 1KHz (at 1MHz for SL products)						
Capacitarice	10 ~ 330pf	10 ~ 330pf 100 ~ 2200pf		470 ~ 3300pf		1000 ~ 10000pf			
Dissipation Factor	Cr<30pf, Q≥ 400+20Cr Cr≥30pf, Q≥1000	tg ≤ 2,5%	tg ≤ 3,5%						
Insulation Resistance		Charge at 500VDC for 6	0 seconds, Rj	≥ 1000MΩ					
Tomporatura	Temperatur Cha	rarcteristics Code	SL	Y5P	Y5U	Y5V			
Temperature Characteristics	Temperatur Coe	. +100 ~ - 1000 10-6/℃	. ± 10%	.+22 ~ +56%	.+22 ~ +82%				

Rated Capacitance

The first and second digits identify the first and second significant figures of the capacitance, the third digit identifies the multiplier. The capacitance unit is pf,

Capacitance Tolerance

Letter Symbol	Capacitance Tolerance	Letter Symbol	Capacitance Tolerance		
С	±0,25pf	K	±10%		
D	±0,5pf	M	±20%		
J	±5%	Z	.+80 ~ -20%		

ATE	30.04.2011	Cus
	2 from 14	Cus

Ceramic	Capacitor
Part No.:	I23001
Customer:	

Super High Voltage Disc

DRW:	Jason	CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason	DATE	30.04.2011
APPD:	Schumi			FINISH	Jamy		Sheet No.		2 from 14

email: info@edcon-components.com www.edcon-components.com

Standard atmospheric condition

Temperature: 15~35℃ Relative Humidity: 45~75%

Atmospheric pressure: 86~106KPa (860~1060mbar

Operating and storage temperature range

Operating Temperature:

Tomporoturo	Lowest Operating	Highart Operating		
Temperature	Lowest Operating	Highest Operating		
Characteristics	Temperature	Temperature		
SL	25℃	.+85℃		
COH	25℃	.+85℃		
Y5P	25℃	.+85℃		
Y5U	25℃	.+85℃		
Y5U	25℃	.+85℃		
Y5V	25℃	.+85℃		
Z5U	10℃	.+85℃		
Z5V	10℃	.+85℃		
YR	25℃	.+125℃		

Storage Temperature Range: -10 to + 40℃

Characteristics and test methods

Electrical characteristics and test methods

Wilson	TOLER	RANCE	Mason	DATE	30.04.2011	Customer:			
		wrapped on envelope for 1 to 5 seconds.					gh Voltage Disc ic Capacitor		
Voltage Pr	oof	540V a 1000V t 3000V shall be voltage 1300 betw	The Voltage of 300% rated voltage (for rated voltage 540V and 500V) 200% rated voltage (for rated voltage 1000V to 2000V), 175% rated voltage (for DCG or SBBLC) shall be applied between leads for 1 to 5seconds. The voltages of 250% rated voltage (for 50V capacitors) or 1300V (fort 500V, 1KV and over) shall be applied between leads connected together and metal foil				down or flashover		
Insulatio Resistan		The insulation resistance shall be measured with rated voltage (for Vr≤500VDC); 500VDC (for Vr≥500VDC)within 50± 5seconds of charging			1000M Ω min 1000M Ω min (for SBBLC)				
Quality factories dissipation for		The quality factor or dissipation factor shall be measured at the same conditions ab above				Cr-rated capacitance in unit of pf 2,5% max. (for Y5P,Y5U and Z5U 0,5% max. (for YR) 3,5% max. (for Y5V and Z5U) 5%max. (for SBBLC Y5V and Y5U) 3,5%max. (for SBBLC Y5P)			
						Q≥100	20Cr (forCr<30pf) 00 (forCr<30pf)		
Capacitano tolerano		and 1Vr		oe measured at (Hz and 1Vrms (III)		I),1KHz Refer to individual			

DRW:JasonCHKDWilsonMATL:WilsonTOLERANCEMasonDATE30.04.2011APPD:SchumiFINISHJamySheet No.3 from 14

	The capacitor shall be kept for enough time to reach thermal equilibrium at special temperature of each step in the following table.	
	The capacitance measurement shall be made only at the thermal equilibrium of each step.	Class I
	Step Temperature Step Temperature	Temperature coefficient:
	1 20 ± 2℃ 4 85 ±2℃ (125±2℃ for YR)	Refer to specification sheet
	225 \pm 2°C 5 20 \pm 2°C	Capacitance drift:
	3 20 ± 2℃	Within $\pm 1\%$ or $\pm 0,05$ pf
	For temperature characteristics SL the steps 1 and step 2 may be omitted.	(Whichever is greater)
	The temperature coeffizient and the capacitance drift shall be calculated by the following formulas.	
	(Cm - Co)	
	$= \frac{10^6}{\text{cpm/C}}$	Class II & III
Temperature	Co (1- 10)	Temperature Permittir
Characteristics	$C_0 - C_1$ $C_5 - C_0$ $C_5 - C_1$	Characteris capacitar tics change
	= or or Co Co Co	Y5P ± 10%
	Where	YR ± 15% to -30%
	Co Capacitance at step 3	Y5U ± 22% to -56%
	Cm Capacitance at step 2 and/or step 4	Z5U ± 22% to -56%
	C1,C5 Capacitance at step 1 and step 5	Y5V ± 22% to -82%
	To Measuring temperature at Step 3	Z5V ± 22% to -82%
	T Measuring temperature at Step 2 and /or step 4	201 227
	Pre-tratement:	
	The capacitor shall be stored at a temperature of 55 ±2°C and a relative humidity of 20% or less for 16 to 24 hours.	
	And then the capacitor shall be allowed immediately to cool in container using appropriate dryer such as activated carbon, silica gel	
Robustness of	The capacitor body shall be held in such a manner so that axis of the lead is vertical. The tensile force of 10N (for Ø 0,6mm	· · · · · · · · · · · · · · · · · · ·
Termination	ot 5N (for Ø 0,5mm lead) shall be applied to the lead in a direction of ist axis and acting in a direction away from the body of	
	capacitor for 10 ±1 seconds.	no looseneed or cut of
		Super High Voltage Dis

Ceramic	Capacitor
Part No.:	I23001

DRW:	Jason	CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason	DATE	30.04.2011	Customor
APPD:	Schumi			FINISH	Jamy		Shee	t No.	4 from 14	Customer:

www.edcon-components.com

Bending	The capacitor is held in such a manner so that axis of the lead is vertical. As mass applying a force of 5N (for Ø 0,6mm lead) or 2,5N (for Ø 0,5mm lead) is then suspended from the end of the lead. The body of the capacitor is then inclined within a period of 2 to 3 seconds, through an angle of approximately 90° in the vertical plane and then re turned to its initial position over the same period of time. This operation constitutes one bend. The lead shall be subjected to a total of 2 alternating bends in to opposite directions.						
Endurance character	ristics and test methods.						
Solderability	Solder temperature: 235 ± 5 °C Immersion time; 2 ± 0.5 seconds Immersion speed: 25 ± 6 mm/s	A new uniform coating of the surface being imr	of solder shall cover a minimum of 95% mersed.				
	Frequency range: 10~55Hz.	Apperance	No visible damage				
Vibration	Amplitutde (total excursion); 1,5mm	Capacitance change	Within specified tolerance				
VIDIALIOIT	Total duration: 6hours. This motion shall be aplied for 2 hours in aech of three mutually perpendicular directions.	Quality factor or dissipation factor	Refer to clause 5.1.2				
	Solder temperature and immersion time: $260 \pm 5\%$, 10 ± 0.5 seconds.	Apperance	No visible damage				
Resistance to Soldering Heat	The immersing depth shall be a position 1,27mm from the seating plane.		± 2,5% or ± 0,25pf (whichever is greater, for class I). ± 5% (for Y5P and YR). ±15% (for Y5U and Z5U). ±20% (for Y5V and Z5V).				
	Post treatment: The capacitor shall be preversed at the standard atmospheric condition for 24 ±	Voltage Proof (for					
	2hours.	between leads only)					
Solvent resistance	The capacitor shall be immersed into isopropylalcohol. For 30 ± seconds.	Apperance	No visible damage legible marking				

										Part No.:
DRW:	Jason	CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason	DATE	30.04.2011	Customor
APPD:	Schumi			FINISH	Jamy		Sheet No. 5 from 14		Customer:	

email: info@edcon-components.com

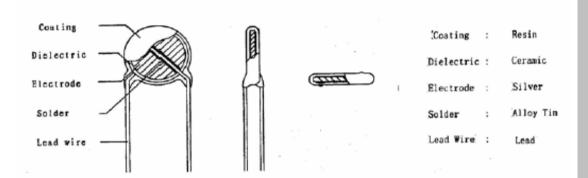
Super High Voltage Disc Ceramic Capacitor

I23001

								Apperand	ce	No visit	ole damage Legi	ble marking	
							:		± 5% or ± 0,5pf (whichever is the greater for class 1)				
									± 10% (Y5P and YR)				
								Capacitance C	Jnange	± 20%	(Y5U and Z5U)		
										± 30%	(Y5V and Z5V)		
			•	be placed in the		•				Q ≥ 200) + 10Cr (for Cr	<10pf	
Temperature C	clo 3			om temperature for		•	titutes one cycle.			Q ≥ 275	5 + 5/2Cr (for 10	opf ≤ CR<30pf	
remperature o	/CIE 3			e subjected to a				Quality fact	or or	Q ≥ 350	0 (for Cr ≥ 30pf)		
			•	ed at the standar	•			dissipation f	actor	5% ma	x. (Y5V & Z5V)		
										3% ma	x. (Y5P, YR, Y5l	J & Z5U)	
										7,5% m	ax. (SBBLC)		
								Insulation Res	sistance	1000M	Ω min.		
								Trisulation resistance		500M C	min. (SBBLC)		
								Voltage pr	roof	For bet	For between leads only.		
								Apperand			ole damage		
		•						Capacitance C		As the			
		The capacitor shall be stored for 500^{+24} hours at a temperature of 40 ± 2 °C and a relative humidity of 90 to 95%. Post treatment: The capacitor shall be preseved for 1 to 2 hours at the standard atmospheric condition.						Q or DF	=	As the			
Damp Heat	r						reseved for 1 to	2500M Ω min (Class I)					
									1000M Ω min (Class II)				
											500M Ω min (Class III)		
								Voltage pr		For bet	ween leads only		
		The voltage that is equal to 200% rated voltage (for 50V and 500V capacitors), or						Apperanc					
								Capacitance C					
Endurance				or 1KV~3KV cap				Quality factory dissipation for the contract of the contract o			The same us before		
Lituurance		SBBLC) shall be applie	ed continuously t			of 85 ± 3℃ (125	dissipation	actor	ł			
				± 3℃ for YR) for 1000 ⁺⁴⁸ ho	ours.		Insulation Res	sistance				
								Voltage pr	roof			Super High	Voltage Disc
										_			Capacitor
												Part No.:	I23001
DRW:	Jaso	on	CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason	DA	TE	30.04.2011	Customer:	
APPD:	Schu	mi			FINISH	Jamy		Shee	et No.	6 from 14		Customer:	

Structure and ROHs Materail request

The marking of class I temperature characteristics is the color block on top of the capacitor


Temperature	C	Ο Δ	SL				
Characteristics	Bla	ack	None				
The marking of class II & III temperature characteristics is symbols specified in following table:							
Temperature Characteristics	Y5P	Y5U / Z5U	Y5V / Z5V	YR			
	Black	E	F HRR&R				

Capacitance

When rated capacitcance is under 1ßßpf the capacitance marking is value being rated capacitance in unit pf. When rated capacitance is 100pf or over the capacitance marking is made in third digit method.

Tolerance:

The tolerance table.					
Tolerance:	± 0,25pf	±0,5pf	±5%	±10%	±20%
Symbol	С	D	J	K	М
The tolerance following table					
Tolerance:	± 10%	± 20%	.+50%, -20%	.+100%, 0%	.+80%, -20%
Symbol	K	М	SL	Р	Z
Potod Voltage					

Components	Material	ROHS request	Remark
Coating	Resin	Cd <100ppm;	
Dielectric	Ceramic	Pb <100ppm;	Appendix 1; SGS report
Electrode	Silver	LIC Ctr DDD DDDC	(Availbale as customer request or See Appendix
Solder	Alloy tin	HG, Ctr PBBs, PBDEs, N.D	1
Lead Wire	Lead	14,5	

Rated Voltage

When rated voltage is 50V the voltage marking is symbol "____" under capcitance marking.

When rated voltage is 500V the voltage marking is symbol "__" over capcitance marking.

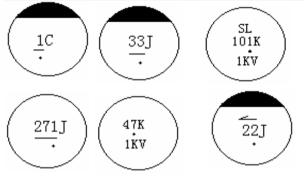
When rated voltage is 1000Vor over, the voltage marking is symbols 1KV, 2KV, 3KV, 6KV..... over capacitance marking.

Super High \	/oltage Disc
Ceramic (Capacitor

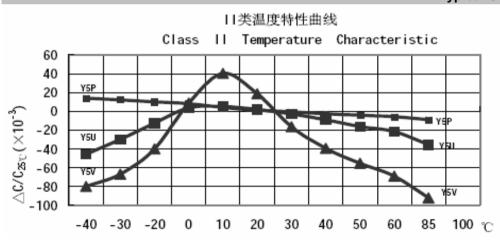
Part No.: **I23001**

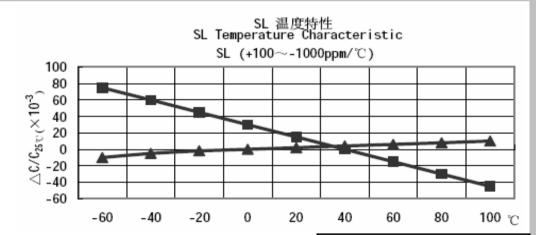
Customer:

DRW:	Jason	CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason	DATE	30.04.2011
APPD:	Schumi			FINISH	Jamy		Sheet No.		7 from 14



Example of marking (Class I)

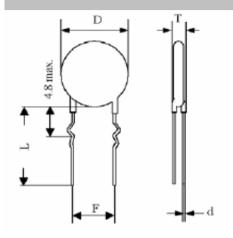

Example of marking (Class II & III) over 1000 Volt

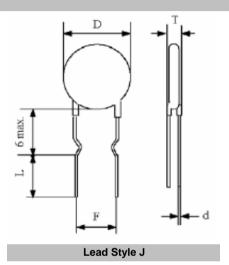


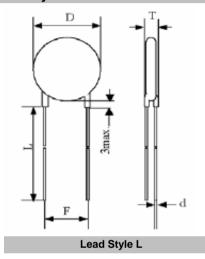
Typical Characteristics Graph

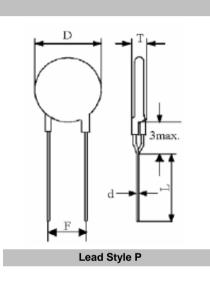
Super High Voltage Disc Ceramic Capacitor							
Part No.:	123001						

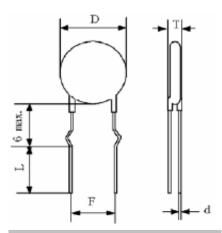
DRW:	Jason	CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason	DATE	30.04.2011
APPD:	Schumi			FINISH	Jamy		Sheet No.		8 from 14










Lead Style

Lead Style W

Super High	Voltage Disc
Ceramic	Capacitor

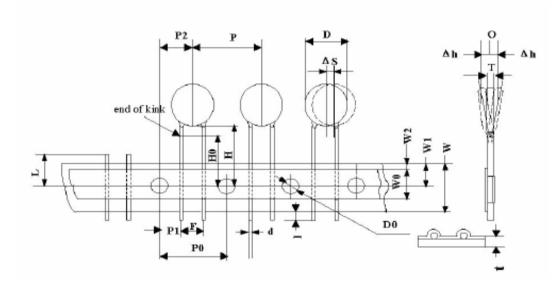
Part No.: **I23001**

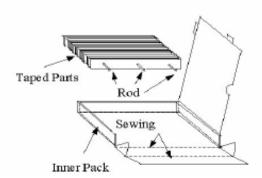
Customer:

Lead Style K

CHKD Wilson MATL: DRW: Wilson TOLERANCE Mason Jason DATE 30.04.2011 APPD: FINISH Schumi Sheet No. 9 from 14 Jamy

www.edcon-components.com





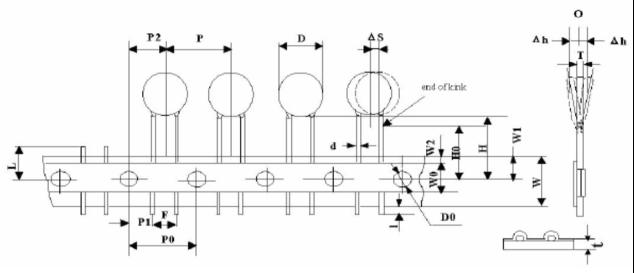
Packing Style F

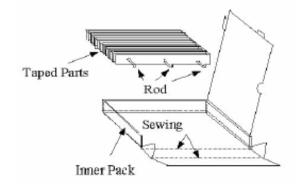
Symbol	Dimension (mm)
P0	12,7 ±0,2
P0	12,7 ±1,0
F	5,0 +0,5/-0,2
P1	3,85 ±0,4
P2	6,35 ±0,4
H0	16,0 ±0,5
Н	20,0 ±0,5
W	18,0 ±0,5
W0	8,0 min
W1	9,0 ±0,3
W2	3,0max.
t	0,7 ±0,2
D	To comply with individual sheet
D0	4,0 ±0,2
d	To comply with individual sheet
I	2,0 max.
L	11 max.
Т	To comply with individual sheet
ΔS	0,5 max
ΔΗ	0,5 max

Super High Voltage Disc
Ceramic Capacitor

Part No.: I23001

										1
DRW:	Jason	CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason	DATE	30.04.2011	ľ
APPD:	Schumi			FINISH	Jamy		Sheet No.		10 from 14	Ľ





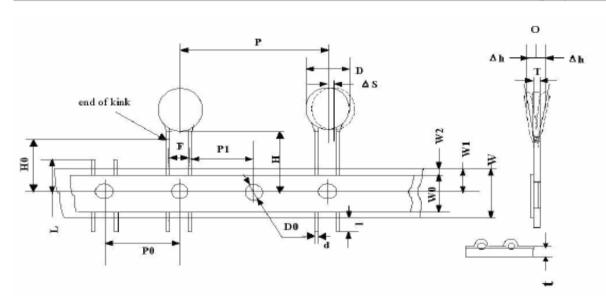
Packing Style V

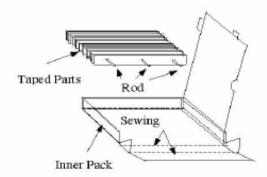
Symbol	Dimension (mm)
P0	15,0 ±0,2
P0	15,0 ±1,0
F	7,5 +0,5/-0,2
P1	3,75 ±0,4
P2	7,5 ±0,4
H0	16,0 ±0,5
Н	20,0 ±0,5
W	18,0 ±0,5
W0	11,5 min
W1	9,0 ±0,3
W2	3,0max.
t	0,7 ±0,2
D	To comply with individual sheet
D0	4,0 ±0,2
d	To comply with individual sheet
I	2,0 max.
L	11 max.
Т	To comply with individual sheet
ΔS	0,5 max
ΔΗ	0,5 max

Super High Voltage Disc Ceramic Capacitor

Part No.: I23001

DRW:	Jason	CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason	DATE	30.04.2011
APPD:	Schumi			FINISH	Jamy		Sheet No.		11 from 14





Packing Style U

Symbol	Dimension (mm)
P0	12,7 ±0,2
P0	25,4 ±1,0
F	10,0 +0,5/-0,2
P1	7,7 ±0,4
P2	
H0	16,0 ±0,5
Н	20,0 ±0,5
W	18,0 ±0,5
W0	11,5 min
W1	9,0 ±0,3
W2	3,0max.
t	0,7 ±0,2
D	To comply with individual sheet
D0	4,0 ±0,2
d	To comply with individual sheet
I	2,0 max.
L	11 max.
Т	To comply with individual sheet
ΔS	0,5 max
ΔΗ	0,5 max

Super High Voltage Disc
Ceramic Capacitor

Part No.: **I23001**

DRW:	Jason	CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason	DATE	30.04.2011
APPD:	Schumi			FINISH	Jamy		Shee	t No.	12 from 14

Ordering Informations

Serie

Range	Tolerance Code	Material Code	Voltage Code	Lead Length	Lead Style	Lead Pitch	Lead Diameter	ROHS	Packing Code
-------	-------------------	------------------	--------------	-------------	------------	------------	------------------	------	-----------------

I23001

152	K	5P	U	11	L	D	7	R	BU

152= 1500pf	K= ±10%	5P= Y5P	U= 4KV	11 = 11mm	L= Style L	D = Pitch 10mm	7= 0,65mm	R= ROHS Conform	BU= Bulk Ware
				25= 25mm	P= Style P			N= NON ROHS	TF= Tape Style F
					W= Style W			Conform	TV= Tape Style U
					J= Style J				TU= Tape Style U
					K= Style K			•	-

Super High Voltage Disc Ceramic Capacitor

Part No.: **I23001**

DRW: Jason CHKD Wilson MATL: Wilson TOLERANCE Mason DATE 30.04.2011 APPD: FINISH Sheet No. Schumi Jamy 13 from 14

Customer:



Soldering Profile Curve

Classification Reflow Profile (JEDEC J-STD-020C)

Time in (sec)

Super High Voltage Disc Ceramic Capacitor

Part No.: I23001

Customer:

Wilson MATL: DRW: CHKD Wilson TOLERANCE Mason DATE 30.04.2011 Jason APPD: FINISH Schumi Sheet No. 14 from 14 Jamy