

DATA SHEET

Super High Voltage Disc Ceramic Capacitor

Serie: 123001

Range 150= 15pf

Tolerance J= ±5%

Voltage 4000 Volt

Material Character. SL

Body Diam. 6,5mm

Pitch 7,5mm

Body Thickn. 6,5mm

Super High Voltage Disc Ceramic Capacitor

Serie No.: **I23001**

Customer:

DRW: Jason CHKD Wilson MATL: Wilson **TOLERANCE** Mason DATE 30.04.2011 APPD: Schumi **FINISH** Sheet No. Jamy 1 from 14

Features

Wide rated Voltage range, wide nominal capacitance range Flame retardent, insulating coating applied Recomended Application Filter circuit of high voltage power High voltage circuit of television set and monitor High voltage circuit of various electronic equipment

Characteristics	Temp.Char. SL	Temp.Char. Y5P	Temp.Char. Y5U		Temp.C	har. Y5V					
Operating Temperature		30°C ~ +85°C									
Rated Voltage	4KVDC ~ 6KVDC	4KVDC ~ 15KVDC	4KVDC ~	15KVDC	4KVDC ~	15KVDC					
Withstanding Voltage	1,5 times related voltage										
Capacitance	Within the speci	Within the specified tolerance, testing at 25°C, 1Vrms and 1KHz (at 1MHz for SL products)									
Capacitance	10 ~ 330pf	100 ~ 2200pf 470 ~ 3300pf		1000 ~	10000pf						
Dissipation Factor	Cr<30pf, Q≥ 400+20Cr Cr≥30pf, Q≥1000	tg ≤ 2,5%		tg≤	3,5%						
Insulation Resistance		Charge at 500VDC for 6	0 seconds, Rj	≥ 1000MΩ							
Temperature	Temperatur Cha	rarcteristics Code	SL	Y5P	Y5U	Y5V					
Characteristics	Temperatur Coe	. +100 ~ - 1000 10-6/°C	. ± 10%	.+22 ~ +56%	.+22 ~ +82%						

Rated Capacitance

The first and second digits identify the first and second significant figures of the capacitance, the third digit identifies the multiplier. The capacitance unit is pf,

Capacitance Tolerance

Letter Symbol	Capacitance Tolerance	Letter Symbol	Capacitance Tolerance
С	±0,25pf	K	±10%
D	±0,5pf	M	±20%
J	±5%	Z	.+80 ~ -20%

DRW:	Jason	CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason	DATE	30.04.201
APPD:	Schumi			FINISH	Jamy		Sheet No.		2 from 14

Super High Voltage Disc Ceramic Capacitor					
Part No.:	I23001				

Customer:

Standard atmospheric condition

Temperature: 15~35°C Relative Humidity: 45~75%

Atmospheric pressure: 86~106KPa (860~1060mbar

Operating and storage temperature range

Operating Temperature:

Temperature	Lowest Operating	Highest Operating
Characteristics	Temperature	Temperature
SL	25°C	.+85°C
COH	25°C	.+85°C
Y5P	25°C	.+85°C
Y5U	25°C	.+85°C
Y5U	25°C	.+85°C
Y5V	25°C	.+85°C
Z5U	10°C	.+85°C
Z5V	10°C	.+85°C
YR	25°C	.+125°C

Storage Temperature Range: -10 to + 40°C

Characteristics and test methods

Electrical characteristics and test methods

Jamy			Shee	t No.	3 from 14	Customer:			
Wilson	TOLER	RANCE	Mason	DATE	30.04.2011				
		,	wrapped on env	elope for 1 to 5 s	Super High Voltage Disc Ceramic Capacitor Part No.: 123001				
Voltage Pr	oof	540V a 1000V t 3000V shall be voltage 1300 betw	and 500V) 200% to 2000V), 175% (/), or 150% rated e applied between s of 250% rated (V (fort 500V, 11) ween leads conn	rated voltage (for rated voltage (for rated voltage (for DO en leads for 1 to voltage (for 50 V and over) shaected together a	or rated voltage or rated voltage CG or SBBLC) 5seconds. The capacitors or all be applied nd metal foil	No break	down or flashover		
Insulatio Resistand		voltage	nsulation resistance shall be measured with rated ge (for Vr≤500VDC); 500VDC (for 00VDC)within 50± 5seconds of charging			1000M Ω min 100 Ω min (for SBBLC)			
Quality factories dissipation factories				r dissipation fa ame condition		2,5% max. (for Y5P,Y5U and Z5U 0,5% max. (for Y5V and Z5U) 3,5% max. (for Y5V and Z5U) 5%max. (for SBBLC Y5V and Y5U) 3,5%max. (for SBBLC Y5P)			
						Q≥100	20Cr (forCr<30pf) 00 (forCr<30pf) eacitance in unit of pf		
Capacitano tolerance		and 1Vi		oe measured at : (Hz and 1Vrms (III)		Refer to individual sheet Q≥400+20Cr (forCr<30pf)			

DRW:JasonCHKDWilsonMATL:WilsonTOLERANCEMasonDATE30.04.2011APPD:SchumiFINISHJamySheet No.3 from 14

	The capacitor s	hall be kept for	r enough time to	reach thermal	equilibrium	at specia	al temperatur	e of each step ir	n the following t	able.			
	The capacitance	e measuremer	nt shall be made	only at the ther	mal equilib	rium of e	ach step.					Class I	
	Step Te	emperature	Step	Ten	nperature							Temperature	coefficient:
	1 :	20 ± 2°C	4	85 ±2°C (1	125±2°C for	YR)						Refer to speci	fication sheet
	_	-25 ± 2°C	5	20	0 ± 2°C							Capacitance of	drift:
	3	20 ± 2°C										Within ±1% o	r ± 0,05pf
	For temperature	e characteristic	s SL the steps 1	and step 2 ma	ıy be omitte	ed.						(Whichever is	greater)
	-	re coeffizient ai Cm - Co)	nd the capacitan	ce drift shall be	e calculated	by the fo	ollowing form	iulas.					
	–	 Co (T- To)	x10 ⁶	(ppm/°C)								Class II & III Temperature	Permitting
Temperature Characteristics			Co - C ₁		C ₅ - Co	0.5	C ₅ - C ₁					Characteris tics	
			Co	or	Co	or	Co					Y5P	± 10%
	Where		00		00		00					_	± 10 % 15% to -30%
		Capacitance a	at step 3										22% to -56%
		•	at step 2 and/or s	step 4									22% to -56%
		•	at step 1 and ste	•									22% to -82%
	To	=	nperature at Ste	₹'									22% to -82%
	Т	•	nperature at Ste	•	o 4								
	Pre-tratement:	J		'									
	The capacitor s	hall be stored	at a temperature	of 55 ±2°C and	d a relative	humidity	of 20% or le	ss for 16 to 24 h	ours.				
	•		e allowed immed			-				ica gel			
Debugtage of			e held in such								n lead)	The capac	itor shal be no
Robustness of Termination	ot 5N (for Ø	0,5mm lead)	shall be applie		in a direction acitor for 10			cting in a direct	tion away fron	n the body	of the		he lead shall leed or cut off.
	•			,							Sup	er High Vo	oltage Disc

Wilson DRW: Jason CHKD Wilson MATL: TOLERANCE Mason DATE 30.04.2011 APPD: FINISH Sheet No. Schumi Jamy 4 from 14

email: info@edcon-components.com

Part No.:

Customer:

Ceramic Capacitor

I23001

	<u> </u>	•						
Bending	The capacitor is held in such a manner so that axis of the lead is vertical. As mass applying a force of 5N (for Ø 0,6mm lead) or 2,5N (for Ø 0,5mm lead) is then suspended from the end of the lead. The body of the capacitor is then inclined within a period of 2 to 3 seconds, through an angle of approximately 90° in the vertical plane and then returned to its initial position over the same period of time. This operation constitutes one bend. The lead shall be subjected to a total of 2 alternating bends in to opposite directions.							
Endurance characte	eristics and test methods.							
Solderability	Solder temperature: 235 ±5°C Immersion time; 2 ± 0,5 seconds Immersion speed: 25 ± 6mm/s	A new uniform coating of the surface being im	of solder shall cover a minimum of 95% mersed.					
	Frequency range: 10~55Hz.	Apperance	No visible damage					
Vibration	Amplitutde (total excursion); 1,5mm	Capacitance change	Within specified tolerance					
Vibration	Total duration: 6hours. This motion shall be aplied for 2 hours in aech of three mutually perpendicular directions.	Quality factor or dissipation factor	Refer to clause 5.1.2					
	Solder temperature and immersion time: 260 ± 5°C, 10 ± 0,5 seconds.	Apperance	No visible damage					
Resistance to Soldering Heat	The immersing depth shall be a position 1,27mm from the seating plane.		± 2,5% or ± 0,25pf (whichever is greater, for class I). ± 5% (for Y5P and YR). ±15% (for Y5U and Z5U). ±20% (for Y5V and Z5V).					
	Post treatment: The capacitor shall be preversed at the standard atmospheric condition for 24 ±	Voltage Proof (for						
	2hours.	between leads only)						
Solvent resistance	The capacitor shall be immersed into isopropylalcohol. For 30 ± seconds.	Apperance	No visible damage legible marking					

DRW:	Jason	CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason	DATE	30.04.2011
APPD:	Schumi			FINISH	Jamy		Shee	t No.	5 from 14

email: info@edcon-components.com

Part No.:

Customer:

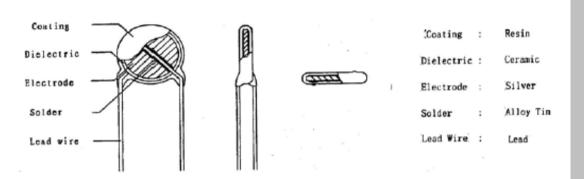
Super High Voltage Disc Ceramic Capacitor

I23001

								Apperand	ce	No visik	ole damage Legi	ible marking		
										± 5% o	r ± 0,5pf (whiche	ever is the greater t	for class 1)	
								Capacitance C	Change	± 10%	(Y5P and YR)			
								Capacitarice	Orlange	± 20% ((Y5U and Z5U)			
		Th	The capacitor shall be placed in the test chamber at temperature of -25 ± 2°C for							± 30%	(Y5V and Z5V)			
				be placed in the om temperature f						Q ≥ 200	0 + 10Cr (for Cr	<10pf		
Temperature C	cycle									Q ≥ 275	5 + 5/2Cr (for 10	Opf ≤ CR<30pf		
romporataro e	Temperature Cycle 30minutes and at room temperature for 3 minutes. This operation constitutes one cyc The capacitor shall be subjected to a total of 5 cycle. Post-treatment: The capacitor							Quality fact			0 (for Cr ≥ 30pf))		
				ed at the standar				dissipation factor	5% max	x. (Y5V & Z5V)				
			·		·						x. (Y5P, YR, Y5I	U & Z5U)		
							7,5% m	ax. (SBBLC)						
								Insulation Res	sistance	1000M				
								500M Ω min. (SBBLC)						
								Voltage pr			ween leads only	<u> </u>		
								Apperand			ole damage			
					•			Capacitance C	Ŭ	As the				
				e stored for 500				Q or DF	F	As the				
Damp Hea	it	relative					reseved for 1 to				Ω min (Class I)			
			2 hours at the standard atmospheric condition. Insula		Insulation Res	,								
) / L		500M Ω min (Class III)				
								Voltage pr		For bet	For between leads only.			
								Apperand						
		The	voltage that is e	equal to 200% ra	ted voltage (for s	50V and 500V c	apacitors), or	Capacitance C						
Endurance				or 1KV~3KV cap				Quality factory dissipation for the contract of the contract o			Т	he same us before	•	
Endurance	,	SBBLC) shall be applie	•	•	•	of 85 ± 3°C (125	uissipation	iacioi					
				± 3°C for YF	R) for 1000 ⁺⁴⁸ ho	ours.		Insulation Res	sistance					
								Voltage pr	roof	1 2				
	L												Noltage Disc	
												Ceramic	Capacitor	
												Part No.:	I23001	
DRW:	Jas		CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason DATE 30.04.2011		-Customer:				
APPD:	Sch	umi			FINISH	Jamy		Shee	et No.		6 from 14	- Customer:		

Structure and ROHs Materail request

The marking of class I temperature characteristics is the color block on top of the capacitor


Temperature	C	Ο Δ	SL					
Characteristics	Bla	ack	None					
The marking of class II & III temperature characteristics is symbols specified in following table:								
specified in 10	nowing table.							
Temperature	Y5P	Y5U / Z5U	Y5V / Z5V	YR				
Characteristics	Black	E	F	HRR&R				

Capacitance

When rated capacitcance is under 1ßßpf the capacitance marking is value being rated capacitance in unit pf. When rated capacitance is 100pf or over the capacitance marking is made in third digit method.

Tolerance:

The tolerance	d in following									
table.										
Tolerance:	± 0,25pf	±0,5pf	±5%	±10%	±20%					
Symbol	С	М								
The tolerance	ecified in									
following table	e.									
Tolerance:	± 10%	± 20%	.+50%, -20%	.+100%, 0%	.+80%, -20%					
Symbol	Symbol K M SL P Z									
Dotad Voltage										

Components	Components Material		Remark	
Coating	Resin	Cd <100ppm;		
Dielectric	Ceramic	Pb <100ppm;	Appendix 1; SGS report	
Electrode	Silver	LIC Ctr DDD DDDC	(Availbale as customer request or See Appendix	
Solder	Alloy tin	HG, Ctr PBBs, PBDEs, N.D	1	
Lead Wire	Lead	11,0		

Rated Voltage

When rated voltage is 50V the voltage marking is symbol "____" under capcitance marking.

When rated voltage is 500V the voltage marking is symbol "__" over capcitance marking.

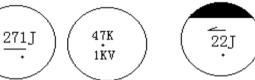
When rated voltage is 1000Vor over, the voltage marking is symbols 1KV, 2KV, 3KV, 6KV..... over capacitance marking.

Super High \	/oltage Disc
Ceramic (Capacitor

Part No.: **I23001**

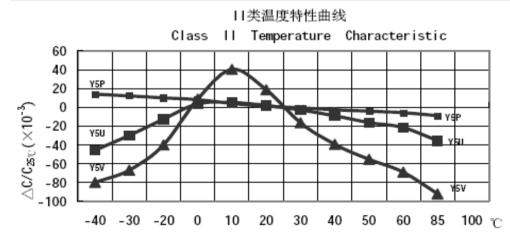
Customer:

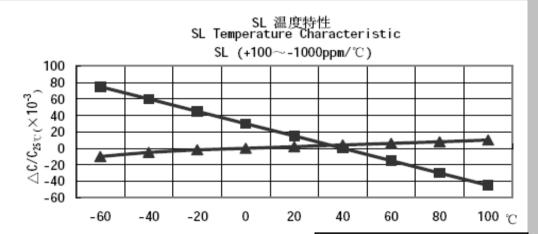
DRW:	Jason	CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason	DATE	30.04.2011
APPD:	Schumi			FINISH	Jamy		Shee	t No.	7 from 14





Example of marking (Class I)



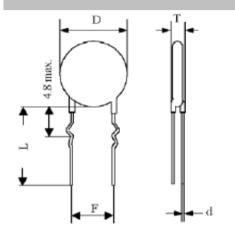

Example of marking (Class II & III) over 1000 Volt

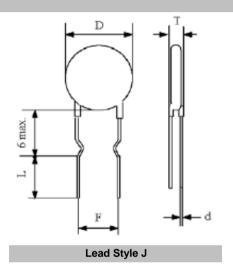
Typical Characteristics Graph

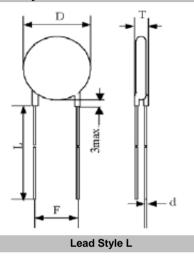
	gh Voltage Disc ic Capacitor
Part No.:	I23001

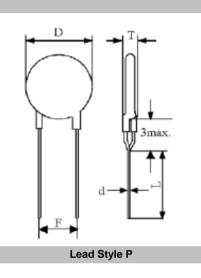
Customer:

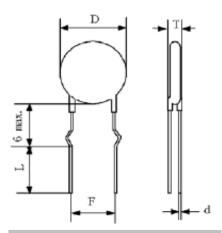
CHKD MATL: DRW: Wilson Wilson **TOLERANCE** Mason 30.04.2011 Jason DATE APPD: Schumi FINISH Sheet No. Jamy 8 from 14










Lead Style

Lead Style W

	Par
011	Custo
1/1	Cusio

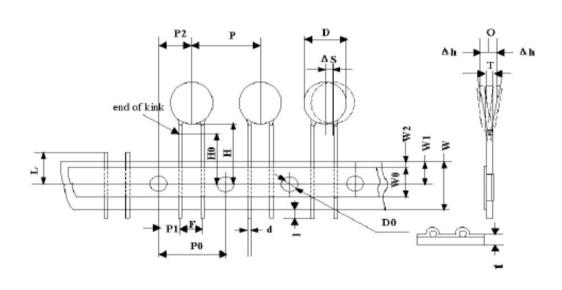
Super High Voltage Disc Ceramic Capacitor

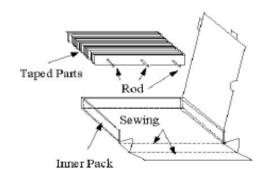
Part No.: **I23001**

Customer:

Lead Style K

CHKD Wilson MATL: 30.04.20 DRW: Wilson TOLERANCE Mason Jason DATE APPD: FINISH Schumi Sheet No. 9 from 14 Jamy





Packing Style F

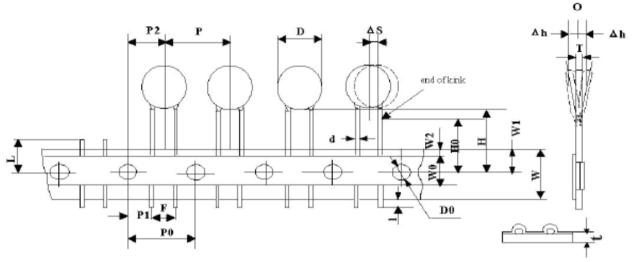
Symbol	Dimension (mm)
P0	12,7 ±0,2
P0	12,7 ±1,0
F	5,0 +0,5/-0,2
P1	3,85 ±0,4
P2	6,35 ±0,4
H0	16,0 ±0,5
Н	20,0 ±0,5
W	18,0 ±0,5
W0	8,0 min
W1	9,0 ±0,3
W2	3,0max.
t	0,7 ±0,2
D	To comply with individual sheet
D0	4,0 ±0,2
d	To comply with individual sheet
I	2,0 max.
L	11 max.
Т	To comply with individual sheet
ΔS	0,5 max
ΔΗ	0,5 max

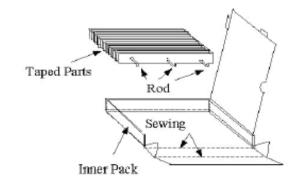
Super High	Voltage Disc
Ceramic	Capacitor

Part No.: **I23001**

Customer:

DRW:	Jason	CHKD	Wilson	MATL:	Wilson	TOLERANCE	Mason	DATE	30.04.2011
APPD:	Schumi			FINISH	Jamy		Shee	t No.	10 from 14





Packing Style V

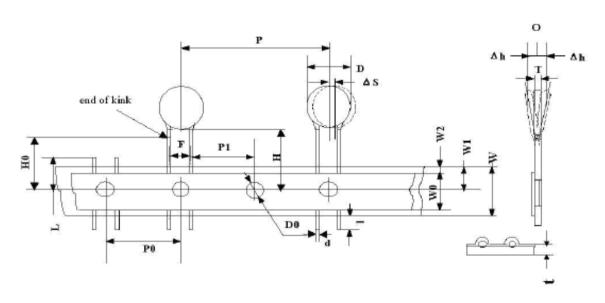
Symbol	Dimension (mm)
P0	15,0 ±0,2
P0	15,0 ±1,0
F	7,5 +0,5/-0,2
P1	3,75 ±0,4
P2	7,5 ±0,4
H0	16,0 ±0,5
Н	20,0 ±0,5
W	18,0 ±0,5
W0	11,5 min
W1	9,0 ±0,3
W2	3,0max.
t	0,7 ±0,2
D	To comply with individual sheet
D0	4,0 ±0,2
d	To comply with individual sheet
I	2,0 max.
L	11 max.
Т	To comply with individual sheet
ΔS	0,5 max
ΔΗ	0,5 max

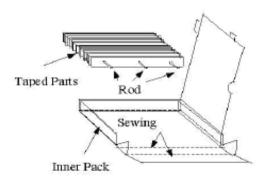
Super High Voltage Disc Ceramic Capacitor

Part No.: 123001

CHKD Wilson MATL: DRW: Wilson TOLERANCE Mason Jason DATE 30.04.2011 APPD: FINISH Sheet No. Schumi 11 from 14 Jamy

Customer:





Packing Style U

Symbol	Dimension (mm)
P0	12,7 ±0,2
P0	25,4 ±1,0
F	10,0 +0,5/-0,2
P1	7,7 ±0,4
P2	
H0	16,0 ±0,5
Н	20,0 ±0,5
W	18,0 ±0,5
W0	11,5 min
W1	9,0 ±0,3
W2	3,0max.
t	0,7 ±0,2
D	To comply with individual sheet
D0	4,0 ±0,2
d	To comply with individual sheet
I	2,0 max.
L	11 max.
Т	To comply with individual sheet
ΔS	0,5 max
ΔΗ	0,5 max

Super High Voltage Disc
Ceramic Capacitor

Part No.: **I23001**

CHKD Wilson MATL: DRW: Wilson TOLERANCE Mason Jason DATE 30.04.2011 Customer: APPD: FINISH Sheet No. Schumi 12 from 14 Jamy

Ordering Informations

Range	Tolerance	Material	Voltage Code	Lead Length	Lead Style	Lead Pitch	Lead	ROHS	Packing
	Code	Code					Diameter	Code	

123001

150	J	SL	U	11	L	С	7	R	BU

150= 15pf	J= ±5%	SL= SL	U= 4KV	11 = 11mm	L= Style L	C= Pitch	7= 0,65mm	R= ROHS	BU= Bulk
'					,	7,5mm	,	Conform	Ware
•				25= 25mm	P= Style P			N= NON	TF= Tape
				23= 2311111	r= Style r			ROHS	Style F
					W= Style W			Conform	TV= Tape
					vv= Style vv		•		Style U
	I Ct.In I						TU= Tape		
					J= Style J				Style Ü
								'	-

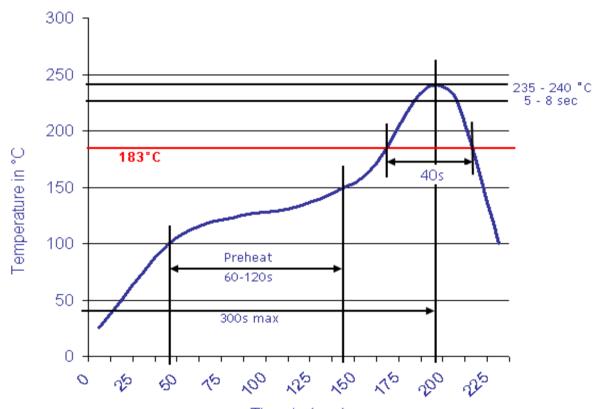
K= Style K

Super High Voltage Disc Ceramic Capacitor

Part No.: **I23001**


DRW: Jason CHKD Wilson MATL: Wilson TOLERANCE Mason DATE 30.04.2011 APPD: FINISH Sheet No. Schumi Jamy 13 from 14

Customer:



Soldering Profile Curve

Classification Reflow Profile (JEDEC J-STD-020C)

Time in (sec)

Super High Voltage Disc Ceramic Capacitor

Part No.: **I23001**

Customer:

MATL: DRW: CHKD Wilson Wilson TOLERANCE Mason DATE 30.04.2011 Jason APPD: FINISH Schumi Sheet No. 14 from 14 Jamy